Int J Stem Cells.  2024 May;17(2):102-112. 10.15283/ijsc24047.

Essential Guidelines for Manufacturing and Application of Organoids

Affiliations
  • 1Department of Biophysics, Sungkyunkwan University, Suwon, Korea
  • 2Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
  • 3Organoid Standards Initiative
  • 4Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea

Abstract

An organoid is a self-organized three-dimensional structure derived from stem cells that mimics the structure, cell composition, and functional characteristics of specific organs and tissues and is used for evaluating the safety and effectiveness of drugs and the toxicity of industrial chemicals. Organoid technology is a new methodology that could replace testing on animals testing and accelerate development of precision and regenerative medicine. However, large variations in production can occur between laboratories with low reproducibility of the production process and no internationally agreed standards for quality evaluation factors at endpoints. To overcome these barriers that hinder the regulatory acceptance and commercialization of organoids, Korea established the Organoid Standards Initiative in September 2023 with various stakeholders, including industry, academia, regulatory agencies, and standard development experts, through public and private partnerships. This developed general guidelines for organoid manufacturing and quality evaluation and for quality evaluation guidelines for organoid-specific manufacturing for the liver, intestines, and heart through extensive evidence analysis and consensus among experts. This report is based on the common standard guideline v1.0, which is a general organoid manufacturing and quality evaluation to promote the practical use of organoids. This guideline does not focus on specific organoids or specific contexts of use but provides guidance to organoid makers and users on materials, procedures, and essential quality assessment methods at end points that are essential for organoid production applicable at the current technology level.

Keyword

Organoids; Stem cells; Embryonic stem cells; Induced pluripotent stem cells; Regulations; Quality

Figure

  • Fig. 1 Organoid Standards Initiative (OSI) organoid guidelines development scope (2023∼2024) (2023.09.∼2024.02.) The OSI developed the first version of the guidelines for promoting organoid practical use, which presented general requirements and considerations for organoid production and quality evaluation with extensive evidence analysis and expert consensus. These guidelines comprise two overall guidelines that consider the fabrication of organoids from human-derived cells and seven guidelines for organoid use with specific organs (liver, intestines, heart, kidney, brain, lung, skin).

  • Fig. 2 Research scope. The guidelines cover cell source, culture, organoid quality control, and storage and preservation. ASCs: adult stem cells, iPSCs: induced pluripotent stem cells, ESCs: embryonic stem cells, DMEM: Dulbecco’s modified Eagle medium, RPMI: Roswell Park Memorial Institute, IMDM: Iscove‘s modified Dulbecco‘s medium, EGF: epidermal growth factor, FGF: fibroblast growth factor, BMP: bone morphogenetic protein, ELISA: enzyme-linked immunosorbent assay, qPCR: quantitative polymerase chain reaction.


Cited by  1 articles

Standards for Organoids
Sun-Ju Ahn
Int J Stem Cells. 2024;17(2):99-101.    doi: 10.15283/ijsc24043.


Reference

References

1. de Souza N. 2018; Organoids. Nat Methods. 15:23. DOI: 10.1038/nmeth.4576.
Article
2. Derouet MF, Allen J, Wilson GW, et al. 2020; Towards personalized induction therapy for esophageal adenocarcinoma: organoids derived from endoscopic biopsy recapitulate the pre-treatment tumor. Sci Rep. 10:14514. DOI: 10.1038/s41598-020-71589-4. PMID: 32884042. PMCID: PMC7471705.
Article
3. Schmeisser S, Miccoli A, von Bergen M, et al. 2023; New approach methodologies in human regulatory toxicology - not if, but how and when! Environ Int. 178:108082. DOI: 10.1016/j.envint.2023.108082. PMID: 37422975.
Article
4. Griffith LG, Swartz MA. 2006; Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 7:211–224. DOI: 10.1038/nrm1858. PMID: 16496023.
Article
5. Nims RW, Sykes G, Cottrill K, Ikonomi P, Elmore E. 2010; Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification. In Vitro Cell Dev Biol Anim. 46:811–819. DOI: 10.1007/s11626-010-9352-9. PMID: 20927602. PMCID: PMC2995877.
Article
6. Korch CT, Hall EM, Dirks WG, et al. 2022; ANSI/ATCC ASN-0002-2022. Human cell line authentication: standardization of short tandem repeat (STR) profiling - revised 2022. American National Standards Institute (ANSI).
7. Pasquier L, Fradin M, Chérot E, et al. 2016; Karyotype is not dead (yet)! Eur J Med Genet. 59:11–15. DOI: 10.1016/j.ejmg.2015.11.016. PMID: 26691665.
Article
8. Wiszniewska J, Bi W, Shaw C, et al. 2014; Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 22:79–87. DOI: 10.1038/ejhg.2013.77. PMID: 23695279. PMCID: PMC3865406.
Article
9. Sukswai N, Khoury JD. 2019; Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection. Curr Hematol Malig Rep. 14:368–375. DOI: 10.1007/s11899-019-00533-9. PMID: 31338668.
Article
10. Givan AL. 2001. Flow cytometry: first principles. 2nd ed. Wiley‐Liss;DOI: 10.1002/0471223948. PMCID: PMC37243.
11. Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990. PCR protocols: a guide to methods and applications. Academic Press.
12. Zhang Q, Han Z, Zhu Y, Chen J, Li W. 2020; The role and specific mechanism of OCT4 in cancer stem cells: a review. Int J Stem Cells. 13:312–325. DOI: 10.15283/ijsc20097. PMID: 32840233. PMCID: PMC7691851.
Article
13. Na J, Plews J, Li J, et al. 2010; Molecular mechanisms of pluripotency and reprogramming. Stem Cell Res Ther. 1:33. DOI: 10.1186/scrt33. PMID: 20974014. PMCID: PMC2983446.
Article
14. Evron A, Goldman S, Shalev E. 2011; Human amniotic epithelial cells cultured in substitute serum medium maintain their stem cell characteristics for up to four passages. Int J Stem Cells. 4:123–132. DOI: 10.15283/ijsc.2011.4.2.123. PMID: 24298345. PMCID: PMC3840962.
Article
15. Wang X, Wang S, Guo B, et al. 2021; Human primary epidermal organoids enable modeling of dermatophyte infections. Cell Death Dis. 12:35. DOI: 10.1038/s41419-020-03330-y. PMID: 33414472. PMCID: PMC7790817.
Article
16. Mikels AJ, Nusse R. 2006; Wnts as ligands: processing, secretion and reception. Oncogene. 25:7461–7468. DOI: 10.1038/sj.onc.1210053. PMID: 17143290.
Article
17. Liu J, Xiao Q, Xiao J, et al. 2022; Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:3. DOI: 10.1038/s41392-021-00762-6. PMID: 34980884. PMCID: PMC8724284.
Article
18. Sarapura VD, Gordon DF, Samuels MH. Melmed S, editor. 2011. Thyroid-stimulating hormone. The pituitary. 3rd ed. Academic Press;p. 167–203. DOI: 10.1016/B978-0-12-380926-1.10006-9.
19. Boström H, Gritli-Linde A, Betsholtz C. 2002; PDGF-A/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn. 223:155–162. DOI: 10.1002/dvdy.1225. PMID: 11803579.
Article
20. Kleinman HK, Luckenbill-Edds L, Cannon FW, Sephel GC. 1987; Use of extracellular matrix components for cell culture. Anal Biochem. 166:1–13. DOI: 10.1016/0003-2697(87)90538-0. PMID: 3314585.
Article
21. Kleinman HK, Philp D, Hoffman MP. 2003; Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 14:526–532. DOI: 10.1016/j.copbio.2003.08.002. PMID: 14580584.
Article
22. Kim J, Koo BK, Knoblich JA. 2020; Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. DOI: 10.1038/s41580-020-0259-3. PMID: 32636524. PMCID: PMC7339799.
Article
23. Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ. 2021; Liver organoids: recent developments, limitations and potential. Front Med (Lausanne). 8:574047. DOI: 10.3389/fmed.2021.574047. PMID: 34026769. PMCID: PMC8131532.
Article
24. Kong J, Wen S, Cao W, et al. 2021; Lung organoids, useful tools for investigating epithelial repair after lung injury. Stem Cell Res Ther. 12:95. DOI: 10.1186/s13287-021-02172-5. PMID: 33516265. PMCID: PMC7846910.
Article
25. Dye BR, Hill DR, Ferguson MA, et al. 2015; In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 4:e05098. DOI: 10.7554/eLife.05098. PMID: 25803487. PMCID: PMC4370217.
Article
26. McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. 2017; Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 20:844–857.e6. DOI: 10.1016/j.stem.2017.03.001. PMID: 28366587. PMCID: PMC5457392.
Article
27. Kim J, Sullivan GJ, Park IH. 2021; How well do brain organoids capture your brain? iScience. 24:102063. DOI: 10.1016/j.isci.2021.102063. PMID: 33554067. PMCID: PMC7856464.
Article
28. Gabbin B, Meraviglia V, Angenent ML, et al. 2023; Heart and kidney organoids maintain organ-specific function in a microfluidic system. Mater Today Bio. 23:100818. DOI: 10.1016/j.mtbio.2023.100818. PMID: 37810749. PMCID: PMC10550812.
Article
29. Mun SJ, Ryu JS, Lee MO, et al. 2019; Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 71:970–985. DOI: 10.1016/j.jhep.2019.06.030. PMID: 31299272.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr