Korean J Physiol Pharmacol.  2024 Jan;28(1):93-103. 10.4196/kjpp.2024.28.1.93.

Store-operated calcium entry in the satellite glial cells of rat sympathetic ganglia

Affiliations
  • 1Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea

Abstract

Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+ , the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.

Keyword

Calcium signaling; Ganglia, sympathetic; Inflammation; Lipopolysaccharide; Satellite glial cell

Figure

  • Fig. 1 Identification of the components of SOCE machinery in neurons and SGC units of rat sympathetic ganglia. (A, a) H&E staining to demonstrate the close localization of SGCs around the large soma of an SCG neuron. (A, b) Kir4.1-positive SGCs (arrows) enveloping SCG neurons (n). (A, c-d) DIC and immunofluorescent images of a neuron-SGC unit in the culture. SGCs showed Kir4.1-IR (arrow). DAPI was used to stain the nuclei of neuron and SGC. Scale bars = 10 μM. (B) Relative mRNA expressions of Orai and STIM, the SOCE components in sympathetic ganglia. The number of experiments is indicated in parentheses. (C) Representative immunofluorescent images of Orai1 (green) and STIM1 (red) distribution in a sympathetic neuron-SGC unit. DAPI was used to stain the nuclei of both neuron and SGC. Confocal images of the cells were captured before and after a 10-min treatment with 30 μM CPA. ER Ca2+ depletion with CPA induced the mobilization of STIM1-Orai1 aggregates, resulting in the assembly of prominent puncta formation in the cell surfaces of a neuron-SGC unit. Scale bars = 10 μM. (D, E). Summary of the number of Orai1 puncta in neuron-SGC units. Vehicle DMSO-treated (VEH) and CPA-treated (CPA) groups were compared (n = 54–60 cells from 5 wells per group). The data are presented as means ± SEM. Unpaired t-test, ***p < 0.001. SOCE, store-operated calcium entry; SGC, satellite glial cell; SCG, superior cervical ganglia; DIC, differential interference contrast; DAPI, 4,6-diamino-2-phenylindole dihydrochloride; STIM, stromal interaction molecule; CPA, cyclopiazonic acid; ER, endoplasmic reticulum; DMSO, dimethyl sulfoxide.

  • Fig. 2 Measurement of SOCE in both neurons and SGCs of sympathetic ganglia. (A) The digital images displaying a neuron-SGC unit (left), a 340 nm/380 nm ratio at the resting basal state (middle), and SOCE induction (right). (B) Representative traces of CPA (30 μM)-induced depletion of Ca2+ stores in the absence of external Ca2+ and the subsequent secondary Ca2+ influx (SOCE) via the activated CRAC by CPA in the presence of external Ca2+ (2 mM) in a neuron-SGC unit. The area under the curve (AUC) of the Ca2+ influx traces during SOCE, referred to AUC SOCE was measured in both SGCs and neurons. (C) Summary of AUC SOCE in both SGCs and neurons. Unpaired Student’s t-test, ***p < 0.001. (D, F) Representative traces demonstrating pharmacological inhibition of SOCE with GSK7975A (1 μM for 1 h, Orai1 inhibitor) and Pyr6 (3 μM for 1 h, SOCE inhibitor) in a neuron-SGC unit. (E, G) Summary of AUC SOCE in both control (VEH) and inhibitor-treated SGCs and neurons. The data are presented as means ± SEM. The number of the tested cells is indicated in parentheses. One-way ANOVA followed by post-hoc Tukey’s multiple comparison test, ***p < 0.001. SOCE, store-operated calcium entry; SGC, satellite glial cell; CPA, cyclopiazonic acid; CRAC, calcium release-activated calcium channel.

  • Fig. 3 LPS-induced upregulation of GFAP and TLR4 in sympathetic ganglia. (A, B) Real-time PCR analysis to assess the transcripts encoding GFAP and TLR4 in the sympathetic ganglia collected from rats with and without LPS injection (2 mg/kg, i.p., 24 h). (C) Confocal images depicting changes in GFAP expression in the SGCs of sympathetic ganglia 24 h after LPS injection. Scale bars = 10 μm. (D) Immunoblots of SCG collected from rats 24 h after injection of either vehicle or LPS in vivo. (E, F) Summary of the LPS-induced changes in the expression of GFAP and TLR4 proteins in the SCG. (G) Confocal images showing the localization and changes in TLR4 immunoreactivity in the control (VEH) and LPS (1 μg/ml, 24 h)-treated neuron-SGC units. Scale bars = 10 μm. Data are presented as means ± SEM. The number of experiments is indicated in parentheses. Unpaired Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001. LPS, lipopolysaccharide; GFAP, glial fibrillary acidic protein; TLR4, toll-like receptor 4; SGC, satellite glial cell; SCG, superior cervical ganglia; i.p., intraperitoneal; DAPI, 4,6-diamino-2-phenylindole dihydrochloride.

  • Fig. 4 LPS decreased SOCE by downregulating Orai 1 and STIM1 in the sympathetic ganglia. (A, B) Summary of the relative expression of transcripts encoding STIM1 and Orai1. (C) Immunoblots of Orai1 and STIM1 protein expression in rat SCG 24 h after either vehicle (VEH) or LPS injection in vivo. (D, E) Summary of the relative expression of Orai1 and STIM1 proteins. (F, H) Representative traces of SOCE in SGCs (F) and neurons (H) following treatment with either vehicle or LPS (1 μg/ml, 24 h in vitro). (G, I) Summary of the LPS-induced changes in AUC SOCE in both SGCs and neurons (n = 17–28 cells). The data are presented as means ± SEM. The number of experiments is indicated in parentheses. Unpaired Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001. LPS, lipopolysaccharide; SOCE, store-operated calcium entry; STIM, stromal interaction molecule; SCG, superior cervical ganglia; SGC, satellite glial cell; CPA, cyclopiazonic acid; AUC, area under the curve.


Reference

1. Hanani M. 2010; Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev. 64:304–327. DOI: 10.1016/j.brainresrev.2010.04.009. PMID: 20441777.
2. Hanani M, Spray DC. 2020; Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci. 21:485–498. Erratum in: Nat Rev Neurosci. 2020;21:732. DOI: 10.1038/s41583-020-0333-z. PMID: 32699292. PMCID: PMC7374656.
3. Enes J, Haburčák M, Sona S, Gerard N, Mitchell AC, Fu W, Birren SJ. 2020; Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS One. 15:e0218643. DOI: 10.1371/journal.pone.0218643. PMID: 32017764. PMCID: PMC6999876. PMID: b5163b7b599a45028b0597de763f016a.
4. Mapps AA, Boehm E, Beier C, Keenan WT, Langel J, Liu M, Thomsen MB, Hattar S, Zhao H, Tampakakis E, Kuruvilla R. 2022; Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. Elife. 11:e74295. DOI: 10.7554/eLife.74295. PMID: 35997251. PMCID: PMC9433091. PMID: 44dc22c124e54edda8a40b48710d2ced.
5. Tu H, Liu J, Zhu Z, Zhang L, Pipinos II, Li YL. 2012; Mitochondria-derived superoxide and voltage-gated sodium channels in baroreceptor neurons from chronic heart-failure rats. J Neurophysiol. 107:591–602. DOI: 10.1152/jn.00754.2011. PMID: 22072507. PMCID: PMC3349624.
6. Lee CK, Park KH, Baik SK, Jeong SW. 2016; Decreased excitability and voltage-gated sodium currents in aortic baroreceptor neurons contribute to the impairment of arterial baroreflex in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol. 310:R1088–R1101. DOI: 10.1152/ajpregu.00129.2015. PMID: 26984890.
7. Oh JW, Lee CK, Whang K, Jeong SW. 2021; Functional plasticity of cardiac efferent neurons contributes to traumatic brain injury-induced cardiac autonomic dysfunction. Brain Res. 1753:147257. DOI: 10.1016/j.brainres.2020.147257. PMID: 33422529.
8. Araque A. 2008; Astrocytes process synaptic information. Neuron Glia Biol. 4:3–10. DOI: 10.1017/S1740925X09000064. PMID: 19250562.
9. Verkhratsky A, Nedergaard M. 2018; Physiology of astroglia. Physiol Rev. 98:239–389. DOI: 10.1152/physrev.00042.2016. PMID: 29351512. PMCID: PMC6050349.
10. Perea G, Araque A. 2005; Glial calcium signaling and neuron-glia communication. Cell Calcium. 38:375–382. DOI: 10.1016/j.ceca.2005.06.015. PMID: 16105683.
11. Prakriya M, Lewis RS. 2015; Store-operated calcium channels. Physiol Rev. 95:1383–1436. DOI: 10.1152/physrev.00020.2014. PMID: 26400989. PMCID: PMC4600950.
12. Verkhratsky A, Parpura V. 2016; Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis. 85:254–261. DOI: 10.1016/j.nbd.2015.03.025. PMID: 25843667. PMCID: PMC4592688.
13. Guner G, Guzelsoy G, Isleyen FS, Sahin GS, Akkaya C, Bayam E, Kotan EI, Kabakcioglu A, Ince-Dunn G. 2017; NEUROD2 regulates Stim1 expression and store-operated calcium entry in cortical neurons. eNeuro. 4:ENEURO.0255-16.2017. DOI: 10.1523/ENEURO.0255-16.2017. PMID: 28303257. PMCID: PMC5343279.
14. Heo DK, Lim HM, Nam JH, Lee MG, Kim JY. 2015; Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. Cell Signal. 27:177–186. DOI: 10.1016/j.cellsig.2014.11.003. PMID: 25451082.
15. Korkotian E, Oni-Biton E, Segal M. 2017; The role of the store-operated calcium entry channel Orai1 in cultured rat hippocampal synapse formation and plasticity. J Physiol. 595:125–140. DOI: 10.1113/JP272645. PMID: 27393042. PMCID: PMC5199748.
16. Molnár T, Yarishkin O, Iuso A, Barabas P, Jones B, Marc RE, Phuong TT, Križaj D. 2016; Store-operated calcium entry in Müller glia is controlled by synergistic activation of TRPC and Orai channels. J Neurosci. 36:3184–3198. DOI: 10.1523/JNEUROSCI.4069-15.2016. PMID: 26985029. PMCID: PMC4792934.
17. Pereira OR Jr, Ramos VM, Cabral-Costa JV, Kowaltowski AJ. 2021; Changes in mitochondrial morphology modulate LPS-induced loss of calcium homeostasis in BV-2 microglial cells. J Bioenerg Biomembr. 53:109–118. DOI: 10.1007/s10863-021-09878-4. PMID: 33585958.
18. Toth AB, Hori K, Novakovic MM, Bernstein NG, Lambot L, Prakriya M. 2019; CRAC channels regulate astrocyte Ca2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci Signal. 12:eaaw5450. DOI: 10.1126/scisignal.aaw5450. PMID: 31113852. PMCID: PMC6837172.
19. Birla H, Xia J, Gao X, Zhao H, Wang F, Patel S, Amponsah A, Bekker A, Tao YX, Hu H. 2022; Toll-like receptor 4 activation enhances Orai1-mediated calcium signal promoting cytokine production in spinal astrocytes. Cell Calcium. 105:102619. DOI: 10.1016/j.ceca.2022.102619. PMID: 35780680. PMCID: PMC9928533.
20. Ikeda SR, Jeong SW. 2004; Use of RGS-insensitive Galpha subunits to study endogenous RGS protein action on G-protein modulation of N-type calcium channels in sympathetic neurons. Methods Enzymol. 389:170–189. DOI: 10.1016/S0076-6879(04)89011-6. PMID: 15313566.
21. George D, Ahrens P, Lambert S. 2018; Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia. 66:1496–1506. DOI: 10.1002/glia.23320. PMID: 29520852.
22. Buijs TJ, Vilar B, Tan CH, McNaughton PA. 2023; STIM1 and ORAI1 form a novel cold transduction mechanism in sensory and sympathetic neurons. EMBO J. 42:e111348. DOI: 10.15252/embj.2022111348. PMID: 36524441. PMCID: PMC9890232.
23. Butt AM, Kalsi A. 2006; Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med. 10:33–44. DOI: 10.1111/j.1582-4934.2006.tb00289.x. PMID: 16563220. PMCID: PMC3933100.
24. Tang X, Schmidt TM, Perez-Leighton CE, Kofuji P. 2010; Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience. 166:397–407. DOI: 10.1016/j.neuroscience.2010.01.005. PMID: 20074622. PMCID: PMC2823846.
25. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. 2012; Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol. 167:1712–1722. DOI: 10.1111/j.1476-5381.2012.02126.x. PMID: 22862290. PMCID: PMC3525873.
26. Verkhratsky A, Rodríguez JJ, Parpura V. 2012; Calcium signalling in astroglia. Mol Cell Endocrinol. 353:45–56. DOI: 10.1016/j.mce.2011.08.039. PMID: 21945602.
27. Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh RW, Nolte C, Skibo G, Kettenmann H. 2008; Store-operated Ca2+ entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium. 43:591–601. DOI: 10.1016/j.ceca.2007.10.004. PMID: 18054077.
28. Lo KJ, Luk HN, Chin TY, Chueh SH. 2002; Store depletion-induced calcium influx in rat cerebellar astrocytes. Br J Pharmacol. 135:1383–1392. DOI: 10.1038/sj.bjp.0704594. PMID: 11906951. PMCID: PMC1573259.
29. Verkhratsky A, Parpura V. 2014; Store-operated calcium entry in neuroglia. Neurosci Bull. 30:125–133. DOI: 10.1007/s12264-013-1343-x. PMID: 23677809. PMCID: PMC5561850.
30. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA. 2005; STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 169:435–445. DOI: 10.1083/jcb.200502019. PMID: 15866891. PMCID: PMC2171946.
31. Prakriya M, Feske S, Gwack Y, ikanth S Sr, Rao A, Hogan PG. 2006; Orai1 is an essential pore subunit of the CRAC channel. Nature. 443:230–233. DOI: 10.1038/nature05122. PMID: 16921383.
32. Moreno C, Sampieri A, Vivas O, Peña-Segura C, Vaca L. 2012; STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes. Cell Calcium. 52:457–467. DOI: 10.1016/j.ceca.2012.08.004. PMID: 22944608.
33. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T. 2005; STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 15:1235–1241. DOI: 10.1016/j.cub.2005.05.055. PMID: 16005298. PMCID: PMC3186072.
34. Feske S, Gwack Y, Prakriya M, ikanth S Sr, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. 2006; A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 441:179–185. DOI: 10.1038/nature04702. PMID: 16582901.
35. Alberdi E, Sánchez-Gómez MV, Matute C. 2005; Calcium and glial cell death. Cell Calcium. 38:417–425. DOI: 10.1016/j.ceca.2005.06.020. PMID: 16095689.
36. Feldman-Goriachnik R, Wu B, Hanani M. 2018; Cholinergic responses of satellite glial cells in the superior cervical ganglia. Neurosci Lett. 671:19–24. DOI: 10.1016/j.neulet.2018.01.051. PMID: 29391220.
37. Putney JW Jr. 1986; A model for receptor-regulated calcium entry. Cell Calcium. 7:1–12. DOI: 10.1016/0143-4160(86)90026-6. PMID: 2420465.
38. Sun Z, Li X, Yang L, Dong X, Han Y, Li Y, Luo J, Li W. 2022; SOCE-mediated NFAT1-NOX2-NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol. 59:3183–3205. DOI: 10.1007/s12035-021-02717-y. PMID: 35286582.
39. Ronco V, Grolla AA, Glasnov TN, Canonico PL, Verkhratsky A, Genazzani AA, Lim D. 2014; Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium. 55:219–229. DOI: 10.1016/j.ceca.2014.02.016. PMID: 24656753.
40. Liddelow SA, Barres BA. 2017; Reactive astrocytes: production, function, and therapeutic potential. Immunity. 46:957–967. DOI: 10.1016/j.immuni.2017.06.006. PMID: 28636962.
41. Feldman-Goriachnik R, Hanani M. 2019; The effects of sympathetic nerve damage on satellite glial cells in the mouse superior cervical ganglion. Auton Neurosci. 221:102584. DOI: 10.1016/j.autneu.2019.102584. PMID: 31494528.
42. Mohr KM, Pallesen LT, Richner M, Vaegter CB. 2021; Discrepancy in the usage of GFAP as a marker of satellite glial cell reactivity. Biomedicines. 9:1022. DOI: 10.3390/biomedicines9081022. PMID: 34440226. PMCID: PMC8391720. PMID: d3dedfdaedd6488d98346ab13e5e037a.
43. Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. 2019; TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson's diseases in vivo model. Brain Behav Immun. 76:236–247. DOI: 10.1016/j.bbi.2018.12.003. PMID: 30550933.
44. Bruno K, Woller SA, Miller YI, Yaksh TL, Wallace M, Beaton G, Chakravarthy K. 2018; Targeting toll-like receptor-4 (TLR4)-an emerging therapeutic target for persistent pain states. Pain. 159:1908–1915. DOI: 10.1097/j.pain.0000000000001306. PMID: 29889119. PMCID: PMC7890571.
45. Vuong B, Hogan-Cann AD, Alano CC, Stevenson M, Chan WY, Anderson CM, Swanson RA, Kauppinen TM. 2015; NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1. J Neuroinflammation. 12:229. DOI: 10.1186/s12974-015-0448-8. PMID: 26637332. PMCID: PMC4670503.
46. Pulver RA, Rose-Curtis P, Roe MW, Wellman GC, Lounsbury KM. 2004; Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle. Circ Res. 94:1351–1358. DOI: 10.1161/01.RES.0000127618.34500.FD. PMID: 15073039.
47. Crabtree GR, Olson EN. 2002; NFAT signaling: choreographing the social lives of cells. Cell. 109 Suppl:S67–S79. DOI: 10.1016/S0092-8674(02)00699-2. PMID: 11983154.
48. Won YJ, Whang K, Kong ID, Park KS, Lee JW, Jeong SW. 2006; Expression profiles of high voltage-activated calcium channels in sympathetic and parasympathetic pelvic ganglion neurons innervating the urogenital system. J Pharmacol Exp Ther. 317:1064–1071. DOI: 10.1124/jpet.105.098210. PMID: 16467454.
49. Park CY, Shcheglovitov A, Dolmetsch R. 2010; The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science. 330:101–105. DOI: 10.1126/science.1191027. PMID: 20929812.
50. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL. 2010; The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science. 330:105–109. DOI: 10.1126/science.1191086. PMID: 20929813. PMCID: PMC3601900.
51. Pascual-Caro C, Berrocal M, Lopez-Guerrero AM, Alvarez-Barrientos A, Pozo-Guisado E, Gutierrez-Merino C, Mata AM, Martin-Romero FJ. 2018; STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca2+ entry. J Mol Med (Berl). 96:1061–1079. Erratum in: J Mol Med (Berl). 2019;97:1215-1217. DOI: 10.1007/s00109-018-1677-y. PMID: 30088035. PMCID: PMC6133163.
52. Afroz S, Arakaki R, Iwasa T, Oshima M, Hosoki M, Inoue M, Baba O, Okayama Y, Matsuka Y. 2019; CGRP induces differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int J Mol Sci. 20:711. DOI: 10.3390/ijms20030711. PMID: 30736422. PMCID: PMC6386987. PMID: 5cadf5c0a6f24eb5a947b20d78314b45.
53. Vause CV, Durham PL. 2010; Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: findings from array analysis. Neurosci Lett. 473:163–167. DOI: 10.1016/j.neulet.2010.01.074. PMID: 20138125. PMCID: PMC3131086.
54. Ren WJ, Illes P. 2022; Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal. 18:83–92. DOI: 10.1007/s11302-021-09796-5. PMID: 34799827. PMCID: PMC8850523.
55. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF. 2005; The cytokine IL-1beta transiently enhances P2X7 receptor expression and function in human astrocytes. Glia. 49:245–258. DOI: 10.1002/glia.20110. PMID: 15472991. PMCID: PMC2586293.
56. Xie AX, Lee JJ, McCarthy KD. 2017; Ganglionic GFAP+ glial Gq-GPCR signaling enhances heart functions in vivo. JCI Insight. 2:e90565. DOI: 10.1172/jci.insight.90565. PMID: 28138563. PMCID: PMC5256145.
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr