1. Galili U. 2005; The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol. 83:674–86. DOI:
10.1111/j.1440-1711.2005.01366.x. PMID:
16266320.
3. Denner J. 2014; Xenotransplantation-progress and problems: a review. J Transplant Technol Res. 4:1000133. DOI:
10.4172/2161-0991.1000133.
4. Burlak C, Bern M, Brito AE, Isailovic D, Wang ZY, Estrada JL, et al. 2013; N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation. 20:277–91. DOI:
10.1111/xen.12047. PMID:
24033743. PMCID:
PMC4593510.
5. Nanno Y, Shajahan A, Sonon RN, Azadi P, Hering BJ, Burlak C. 2020; High-mannose type N-glycans with core fucosylation and complex-type N-glycans with terminal neuraminic acid residues are unique to porcine islets. PLoS One. 15:e0241249. DOI:
10.1371/journal.pone.0241249. PMID:
33170858. PMCID:
PMC7654812.
6. Choe HM, Luo ZB, Xuan MF, Quan BH, Kang JD, Oh MJ, et al. Sialylation and fucosylation changes of cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) and glycoprotein, alpha1, 3-galactosyltransferase (GGTA1) knockout pig erythrocyte membranes. BioRxiv [Preprint]. 2020. Available from:
https://doi.org/10.1101/2020.08.07.240846. cited 2023 Aug 23. DOI:
10.1101/2020.08.07.240846.
7. Yeh P, Ezzelarab M, Bovin N, Hara H, Long C, Tomiyama K, et al. 2010; Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation. 17:197–206. DOI:
10.1111/j.1399-3089.2010.00579.x. PMID:
20636540.
8. Ezzelarab MB, Cooper DK. 2015; Systemic inflammation in xenograft recipients (SIXR): a new paradigm in pig-to-primate xenotransplantation? Int J Surg. 23(Pt B):301–5. DOI:
10.1016/j.ijsu.2015.07.643. PMID:
26209584. PMCID:
PMC4684785.
9. Garcia MR, Ledgerwood L, Yang Y, Xu J, Lal G, Burrell B, et al. 2010; Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest. 120:2486–96. DOI:
10.1172/JCI41628. PMID:
20551515. PMCID:
PMC2898596.
11. Biswas SK, Mantovani A. 2010; Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 11:889–96. DOI:
10.1038/ni.1937. PMID:
20856220.
12. Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, et al. 2011; Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol. 187:2072–8. DOI:
10.4049/jimmunol.1100762. PMID:
21804023.
13. Ezzelarab M, Hara H, Busch J, Rood PP, Zhu X, Ibrahim Z, et al. 2006; Antibodies directed to pig non-Gal antigens in naïve and sensitized baboons. Xenotransplantation. 13:400–7. DOI:
10.1111/j.1399-3089.2006.00320.x. PMID:
16925663.
14. Baumann BC, Stussi G, Huggel K, Rieben R, Seebach JD. 2007; Reactivity of human natural antibodies to endothelial cells from Galalpha(1,3)Gal-deficient pigs. Transplantation. 83:193–201. DOI:
10.1097/01.tp.0000250478.00567.e5. PMID:
17264816.
15. Pierson RN 3rd, Dorling A, Ayares D, Rees MA, Seebach JD, Fishman JA, et al. 2009; Current status of xenotransplantation and prospects for clinical application. Xenotransplantation. 16:263–80. DOI:
10.1111/j.1399-3089.2009.00534.x. PMID:
19796067. PMCID:
PMC2866107.
16. Lin CC, Chen D, McVey JH, Cooper DK, Dorling A. 2008; Expression of tissue factor and initiation of clotting by human platelets and monocytes after incubation with porcine endothelial cells. Transplantation. 86:702–9. DOI:
10.1097/TP.0b013e31818410a3. PMID:
18791452. PMCID:
PMC2637773.
17. Zelaya H, Rothmeier AS, Ruf W. 2018; Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost. 16:1941–52. DOI:
10.1111/jth.14246. PMID:
30030891.
18. Bühler L, Basker M, Alwayn IP, Goepfert C, Kitamura H, Kawai T, et al. 2000; Coagulation and thrombotic disorders associated with pig organ and hematopoietic cell transplantation in nonhuman primates. Transplantation. 70:1323–31. DOI:
10.1097/00007890-200011150-00010. PMID:
11087147.
19. Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, et al. 2005; Heart transplantation in baboons using alpha1,3-galactosyltransferase gene- knockout pigs as donors: initial experience. Nat Med. 11:29–31. DOI:
10.1038/nm1171. PMID:
15619628.
20. Siegel JB, Grey ST, Lesnikoski BA, Kopp CW, Soares M, Esch JS, et al. 1997; Xenogeneic endothelial cells activate human prothrombin. Transplantation. 64:888–96. DOI:
10.1097/00007890-199709270-00017. PMID:
9326416.
21. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d'Apice AJ, Cowan PJ. 2008; Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant. 8:1101–12. DOI:
10.1111/j.1600-6143.2008.02210.x. PMID:
18444940.
22. Cowan PJ, d'Apice AJ. 2009; Complement activation and coagulation in xenotransplantation. Immunol Cell Biol. 87:203–8. DOI:
10.1038/icb.2008.107. PMID:
19153592.
23. Pareti FI, Mazzucato M, Bottini E, Mannucci PM. 1992; Interaction of porcine von Willebrand factor with the platelet glycoproteins Ib and IIb/IIIa complex. Br J Haematol. 82:81–6. DOI:
10.1111/j.1365-2141.1992.tb04597.x. PMID:
1419806.
26. Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJ, Houser SL, et al. 2008; Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol. 172:1471–81. DOI:
10.2353/ajpath.2008.070672. PMID:
18467706. PMCID:
PMC2408408.
27. Khalpey Z, Yuen AH, Kalsi KK, Kochan Z, Karbowska J, Slominska EM, et al. 2005; Loss of ecto-5'nucleotidase from porcine endothelial cells after exposure to human blood: Implications for xenotransplantation. Biochim Biophys Acta. 1741:191–8. DOI:
10.1016/j.bbadis.2005.03.008. PMID:
15955461.
28. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, et al. 2012; Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol. 52:958–61. DOI:
10.1016/j.yjmcc.2012.01.002. PMID:
22269791. PMCID:
PMC3327755.
29. Zecher D, van Rooijen N, Rothstein DM, Shlomchik WD, Lakkis FG. 2009; An innate response to allogeneic nonself mediated by monocytes. J Immunol. 183:7810–6. DOI:
10.4049/jimmunol.0902194. PMID:
19923456.
30. Oberbarnscheidt MH, Zeng Q, Li Q, Dai H, Williams AL, Shlomchik WD, et al. 2014; Non-self recognition by monocytes initiates allograft rejection. J Clin Invest. 124:3579–89. DOI:
10.1172/JCI74370. PMID:
24983319. PMCID:
PMC4109551.
31. Ezzelarab MB, Ekser B, Azimzadeh A, Lin CC, Zhao Y, Rodriguez R, et al. 2015; Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation. 22:32–47. DOI:
10.1111/xen.12133. PMID:
25209710. PMCID:
PMC4329078.
32. Iwase H, Ekser B, Zhou H, Liu H, Satyananda V, Humar R, et al. 2015; Further evidence for sustained systemic inflammation in xenograft recipients (SIXR). Xenotransplantation. 22:399–405. DOI:
10.1111/xen.12182. PMID:
26292982. PMCID:
PMC4575631.
33. Li T, Lee W, Hara H, Long C, Ezzelarab M, Ayares D, et al. 2017; An investigation of extracellular histones in pig-to-baboon organ xenotransplantation. Transplantation. 101:2330–9. DOI:
10.1097/TP.0000000000001676. PMID:
28157735. PMCID:
PMC5856196.
34. Iwase H, Liu H, Li T, Zhang Z, Gao B, Hara H, et al. 2017; Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation. 24:e12296. DOI:
10.1111/xen.12296. PMID:
28294424. PMCID:
PMC5397335.
36. Ishihara K, Hirano T. 2002; IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 13:357–68. DOI:
10.1016/S1359-6101(02)00027-8. PMID:
12220549.
37. Hunter CA, Jones SA. 2015; IL-6 as a keystone cytokine in health and disease. Nat Immunol. 16:448–57. DOI:
10.1038/ni.3153. PMID:
25898198.
38. Jones SA, Jenkins BJ. 2018; Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 18:773–89. DOI:
10.1038/s41577-018-0066-7. PMID:
30254251.
39. Lin CC, Ezzelarab M, Shapiro R, Ekser B, Long C, Hara H, et al. 2010; Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant. 10:1556–68. DOI:
10.1111/j.1600-6143.2010.03147.x. PMID:
20642682. PMCID:
PMC2914318.
41. Wu J, Stevenson MJ, Brown JM, Grunz EA, Strawn TL, Fay WP. 2008; C-reactive protein enhances tissue factor expression by vascular smooth muscle cells: mechanisms and in vivo significance. Arterioscler Thromb Vasc Biol. 28:698–704. DOI:
10.1161/ATVBAHA.107.160903. PMID:
18276908.
42. Strukova S. 2006; Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front Biosci. 11:59–80. DOI:
10.2741/1780. PMID:
16146714.
43. Stein M, Keshav S, Harris N, Gordon S. 1992; Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 176:287–92. DOI:
10.1084/jem.176.1.287. PMID:
1613462. PMCID:
PMC2119288.
44. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. 2004; The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–86. DOI:
10.1016/j.it.2004.09.015. PMID:
15530839.
45. Curi R, Mendes R, Crispin LA, Norata GD, Sampaio SC, Newsholme P. 2017; A past and present overview of macrophage metabolism and functional outcomes. Clin Sci (Lond). 131:1329–42. DOI:
10.1042/CS20170220. PMID:
28592702.
46. Ip WK, Hoshi N, Shouval DS, Snapper S, Medzhitov R. 2017; Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 356:513–9. DOI:
10.1126/science.aal3535. PMID:
28473584. PMCID:
PMC6260791.
47. Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA. 2002; Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A. 99:1503–8. DOI:
10.1073/pnas.022649799. PMID:
11805289. PMCID:
PMC122220.
48. Martinez FO, Gordon S, Locati M, Mantovani A. 2006; Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 177:7303–11. DOI:
10.4049/jimmunol.177.10.7303. PMID:
17082649.
50. Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, et al. 2016; IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone? Expert Rev Clin Immunol. 12:849–55. DOI:
10.1586/1744666X.2016.1168293. PMID:
26999417.
51. Di Benedetto P, Ruscitti P, Vadasz Z, Toubi E, Giacomelli R. 2019; Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmun Rev. 18:102369. DOI:
10.1016/j.autrev.2019.102369. PMID:
31404701.
52. Zhang F, Zhang J, Cao P, Sun Z, Wang W. 2021; The characteristics of regulatory macrophages and their roles in transplantation. Int Immunopharmacol. 91:107322. DOI:
10.1016/j.intimp.2020.107322. PMID:
33418238.
53. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. 2013; Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–85. DOI:
10.1002/path.4133. PMID:
23096265.
54. Martinez FO, Gordon S. 2014; The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13. DOI:
10.12703/P6-13. PMID:
24669294. PMCID:
PMC3944738.
55. Sudan B, Wacker MA, Wilson ME, Graff JW. 2015; A systematic approach to identify markers of distinctly activated human macrophages. Front Immunol. 6:253. DOI:
10.3389/fimmu.2015.00253. PMID:
26074920. PMCID:
PMC4445387.
56. Hesketh M, Sahin KB, West ZE, Murray RZ. 2017; Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci. 18:1545. DOI:
10.3390/ijms18071545. PMID:
28714933. PMCID:
PMC5536033.
57. Colin S, Chinetti-Gbaguidi G, Staels B. 2014; Macrophage phenotypes in atherosclerosis. Immunol Rev. 262:153–66. DOI:
10.1111/imr.12218. PMID:
25319333.
58. De Paoli F, Staels B, Chinetti-Gbaguidi G. 2014; Macrophage phenotypes and their modulation in atherosclerosis. Circ J. 78:1775–81. DOI:
10.1253/circj.CJ-14-0621. PMID:
24998279.
61. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME. 2012; Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem. 287:21816–25. DOI:
10.1074/jbc.M111.327031. PMID:
22549785. PMCID:
PMC3381144.
62. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. 2018; Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–40. DOI:
10.1002/jcp.26429. PMID:
29319160.
63. Ito I, Asai A, Suzuki S, Kobayashi M, Suzuki F. 2017; M2b macrophage polarization accompanied with reduction of long noncoding RNA GAS5. Biochem Biophys Res Commun. 493:170–5. DOI:
10.1016/j.bbrc.2017.09.053. PMID:
28917839.
64. Wilcock DM. 2012; A changing perspective on the role of neuroinflammation in Alzheimer's disease. Int J Alzheimers Dis. 2012:495243. DOI:
10.1155/2012/495243. PMID:
22844636. PMCID:
PMC3403314.
65. Ohlsson SM, Linge CP, Gullstrand B, Lood C, Johansson A, Ohlsson S, et al. 2014; Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarization. Clin Immunol. 152:10–9. DOI:
10.1016/j.clim.2014.02.016. PMID:
24631966.
66. Schulert GS, Fall N, Harley JB, Shen N, Lovell DJ, Thornton S, et al. 2016; Monocyte microRNA expression in active systemic juvenile idiopathic arthritis implicates microRNA-125a-5p in polarized monocyte phenotypes. Arthritis Rheumatol. 68:2300–13. DOI:
10.1002/art.39694. PMID:
27014994. PMCID:
PMC5001902.
67. Orme J, Mohan C. 2012; Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 13:151–8.
68. MacParland SA, Tsoi KM, Ouyang B, Ma XZ, Manuel J, Fawaz A, et al. 2017; Phenotype determines nanoparticle uptake by human macrophages from liver and blood. ACS Nano. 11:2428–43. DOI:
10.1021/acsnano.6b06245. PMID:
28040885.
69. Fujiwara Y, Hizukuri Y, Yamashiro K, Makita N, Ohnishi K, Takeya M, et al. 2016; Guanylate-binding protein 5 is a marker of interferon-γ-induced classically activated macrophages. Clin Transl Immunology. 5:e111. DOI:
10.1038/cti.2016.59. PMID:
27990286. PMCID:
PMC5133363.
70. Rőszer T. 2015; Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015:816460. DOI:
10.1155/2015/816460. PMID:
26089604. PMCID:
PMC4452191.
72. Zizzo G, Hilliard BA, Monestier M, Cohen PL. 2012; Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 189:3508–20. DOI:
10.4049/jimmunol.1200662. PMID:
22942426. PMCID:
PMC3465703.
73. Lee C, Jeong H, Lee H, Hong M, Park SY, Bae H. 2020; Magnolol attenuates cisplatin-induced muscle wasting by M2c macrophage activation. Front Immunol. 11:77. DOI:
10.3389/fimmu.2020.00077. PMID:
32117241. PMCID:
PMC7018987.
74. Miki S, Suzuki JI, Takashima M, Ishida M, Kokubo H, Yoshizumi M. 2021; S-1-Propenylcysteine promotes IL-10-induced M2c macrophage polarization through prolonged activation of IL-10R/STAT3 signaling. Sci Rep. 11:22469. DOI:
10.1038/s41598-021-01866-3. PMID:
34789834. PMCID:
PMC8599840.
75. Tian L, Yu Q, Liu D, Chen Z, Zhang Y, Lu J, et al. 2022; Epithelial-mesenchymal transition of peritoneal mesothelial cells is enhanced by M2c macrophage polarization. Immunol Invest. 51:301–15. DOI:
10.1080/08820139.2020.1828911. PMID:
34490837.
76. Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, et al. 2007; Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood. 110:4319–30. DOI:
10.1182/blood-2007-02-072587. PMID:
17848619.
77. Wang Q, Ni H, Lan L, Wei X, Xiang R, Wang Y. 2010; Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 20:701–12. DOI:
10.1038/cr.2010.52. PMID:
20386569.
79. Martinez FO, Sica A, Mantovani A, Locati M. 2008; Macrophage activation and polarization. Front Biosci. 13:453–61. DOI:
10.2741/2692. PMID:
17981560.
81. Atri C, Guerfali FZ, Laouini D. 2018; Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 19:1801. DOI:
10.3390/ijms19061801. PMID:
29921749. PMCID:
PMC6032107.
82. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. 2019; The metabolic signature of macrophage responses. Front Immunol. 10:1462. DOI:
10.3389/fimmu.2019.01462. PMID:
31333642. PMCID:
PMC6618143.
83. Mosser DM, Edwards JP. 2008; Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–69. DOI:
10.1038/nri2448. PMID:
19029990. PMCID:
PMC2724991.
84. Sutterwala FS, Noel GJ, Salgame P, Mosser DM. 1998; Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J Exp Med. 188:217–22. DOI:
10.1084/jem.188.1.217. PMID:
9653099. PMCID:
PMC2525554.
85. Sutterwala FS, Noel GJ, Clynes R, Mosser DM. 1997; Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med. 185:1977–85. DOI:
10.1084/jem.185.11.1977. PMID:
9166427. PMCID:
PMC2196339.
86. Lucas M, Zhang X, Prasanna V, Mosser DM. 2005; ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol. 175:469–77. DOI:
10.4049/jimmunol.175.1.469. PMID:
15972681.
87. Chandrasekaran P, Izadjoo S, Stimely J, Palaniyandi S, Zhu X, Tafuri W, et al. 2019; Regulatory macrophages inhibit alternative macrophage activation and attenuate pathology associated with fibrosis. J Immunol. 203:2130–40. DOI:
10.4049/jimmunol.1900270. PMID:
31541024.
88. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. 2006; Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 80:1298–307. DOI:
10.1189/jlb.0406249. PMID:
16905575. PMCID:
PMC2642590.
89. Fleming BD, Chandrasekaran P, Dillon LA, Dalby E, Suresh R, Sarkar A, et al. 2015; The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling. J Leukoc Biol. 98:395–407. DOI:
10.1189/jlb.2A1114-560R. PMID:
26048978. PMCID:
PMC4541501.
90. Gordon S. 2003; Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. DOI:
10.1038/nri978. PMID:
12511873.
91. Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N, et al. 2018; TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 9:2858. DOI:
10.1038/s41467-018-05167-8. PMID:
30030423. PMCID:
PMC6054648.
92. Yeung ST, Ovando LJ, Russo AJ, Rathinam VA, Khanna KM. 2023; CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis. Cell Rep. 42:112171. DOI:
10.1016/j.celrep.2023.112171. PMID:
36867536. PMCID:
PMC10123955.
93. Vos AC, Wildenberg ME, Arijs I, Duijvestein M, Verhaar AP, de Hertogh G, et al. 2012; Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro. Inflamm Bowel Dis. 18:401–8. DOI:
10.1002/ibd.21818. PMID:
21936028.
94. Ziegler T, Rausch S, Steinfelder S, Klotz C, Hepworth MR, Kühl AA, et al. 2015; A novel regulatory macrophage induced by a helminth molecule instructs IL-10 in CD4+ T cells and protects against mucosal inflammation. J Immunol. 194:1555–64. DOI:
10.4049/jimmunol.1401217. PMID:
25589067.
95. Nie H, Wang A, He Q, Yang Q, Liu L, Zhang G, et al. 2017; Phenotypic switch in lung interstitial macrophage polarization in an ovalbumin-induced mouse model of asthma. Exp Ther Med. 14:1284–92. DOI:
10.3892/etm.2017.4699. PMID:
28810589. PMCID:
PMC5526127.
96. Zhang G, Hara H, Yamamoto T, Li Q, Jagdale A, Li Y, et al. 2018; Serum amyloid a as an indicator of impending xenograft failure: experimental studies. Int J Surg. 60:283–90. DOI:
10.1016/j.ijsu.2018.11.027. PMID:
30521954. PMCID:
PMC6310230.
97. Hamilton TA, Zhao C, Pavicic PG Jr, Datta S. 2014; Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol. 5:554. DOI:
10.3389/fimmu.2014.00554. PMID:
25484881. PMCID:
PMC4240161.
98. Munn DH, Armstrong E. 1993; Cytokine regulation of human monocyte differentiation in vitro: the tumor-cytotoxic phenotype induced by macrophage colony-stimulating factor is developmentally regulated by gamma-interferon. Cancer Res. 53:2603–13.
100. Rückerl D, Hessmann M, Yoshimoto T, Ehlers S, Hölscher C. 2006; Alternatively activated macrophages express the IL-27 receptor alpha chain WSX-1. Immunobiology. 211:427–36. DOI:
10.1016/j.imbio.2006.05.008. PMID:
16920482.
101. Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. 2019; Glucocorticoids shape macrophage phenotype for tissue repair. Front Immunol. 10:1591. DOI:
10.3389/fimmu.2019.01591. PMID:
31354730. PMCID:
PMC6632423.
102. Chen L, Eapen MS, Zosky GR. 2017; Vitamin D both facilitates and attenuates the cellular response to lipopolysaccharide. Sci Rep. 7:45172. DOI:
10.1038/srep45172. PMID:
28345644. PMCID:
PMC5366921.
104. Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, et al. 2013; The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 4:2834. DOI:
10.1038/ncomms3834. PMID:
24280772. PMCID:
PMC3876736.
105. Pham HL, Yang DH, Chae WR, Jung JH, Hoang TX, Lee NY, et al. 2023; PDMS micropatterns coated with PDA and RGD induce a regulatory macrophage-like phenotype. Micromachines (Basel). 14:673. DOI:
10.3390/mi14030673. PMID:
36985080. PMCID:
PMC10052727.
106. Riquelme P, Amodio G, Macedo C, Moreau A, Obermajer N, Brochhausen C, et al. 2017; DHRS9 is a stable marker of human regulatory macrophages. Transplantation. 101:2731–8. DOI:
10.1097/TP.0000000000001814. PMID:
28594751. PMCID:
PMC6319563.
107. Du L, Lin L, Li Q, Liu K, Huang Y, Wang X, et al. 2019; IGF-2 preprograms maturing macrophages to acquire oxidative phosphorylation-dependent anti-inflammatory properties. Cell Metab. 29:1363–75. DOI:
10.1016/j.cmet.2019.01.006. PMID:
30745181.
108. Suzuki H, Hisamatsu T, Chiba S, Mori K, Kitazume MT, Shimamura K, et al. 2016; Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages. Immunol Lett. 176:18–27. DOI:
10.1016/j.imlet.2016.05.009. PMID:
27208804.
109. Schmidt A, Zhang XM, Joshi RN, Iqbal S, Wahlund C, Gabrielsson S, et al. 2016; Human macrophages induce CD4(+)Foxp3(+) regulatory T cells via binding and re-release of TGF-β. Immunol Cell Biol. 94:747–62. DOI:
10.1038/icb.2016.34. PMID:
27075967.
110. Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, et al. 2020; Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol. 16:e1007657. DOI:
10.1371/journal.pcbi.1007657. PMID:
32097424. PMCID:
PMC7059956.
111. Raggi F, Pelassa S, Pierobon D, Penco F, Gattorno M, Novelli F, et al. 2017; Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front Immunol. 8:1097. DOI:
10.3389/fimmu.2017.01097. PMID:
28936211. PMCID:
PMC5594076.
112. Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, et al. 1999; Alternative versus classical activation of macrophages. Pathobiology. 67:222–6. DOI:
10.1159/000028096. PMID:
10725788.
114. Lawrence T, Natoli G. 2011; Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 11:750–61. DOI:
10.1038/nri3088. PMID:
22025054.
115. Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, et al. 2009; Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 114:3244–54. DOI:
10.1182/blood-2009-04-217620. PMID:
19567879. PMCID:
PMC2759649.
116. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. 2005; Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 175:342–9. DOI:
10.4049/jimmunol.175.1.342. PMID:
15972667.
118. Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. 2011; A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol. 41:2155–64. DOI:
10.1002/eji.201141817. PMID:
21710478.
119. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. 2011; Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 332:1284–8. DOI:
10.1126/science.1204351. PMID:
21566158. PMCID:
PMC3128495.