Int J Stem Cells.  2023 Aug;16(3):260-268. 10.15283/ijsc21177.

Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion

Affiliations
  • 1Department of Gynecology, Tianjin Medical University, Tianjin, China
  • 2Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China

Abstract

Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.

Keyword

Intrauterine adhesion; Mesenchymal stem cells; Extracellular vesicles; Endometrium

Reference

References

1. Schenker JG, Margalioth EJ. 1982; Intrauterine adhesions: an updated appraisal. Fertil Steril. 37:593–610. DOI: 10.1016/S0015-0282(16)46268-0. PMID: 6281085.
Article
2. March CM. 2011; Asherman's syndrome. Semin Reprod Med. 29:83–94. DOI: 10.1055/s-0031-1272470. PMID: 21437822.
Article
3. Klein SM, García CR. 1973; Asherman's syndrome: a critique and current review. Fertil Steril. 24:722–735. DOI: 10.1016/S0015-0282(16)39918-6. PMID: 4725610.
Article
4. Yu D, Wong YM, Cheong Y, Xia E, Li TC. 2008; Asherman syndrome--one century later. Fertil Steril. 89:759–779. DOI: 10.1016/j.fertnstert.2008.02.096. PMID: 18406834.
Article
5. Rajah K, Dizdar M, Balachandren N, Kriedt K, Saridogan E, Mavrelos D. 2019; Who is at risk of endometrial cavity breach at laparoscopic myomectomy? Facts Views Vis Obgyn. 11:229–233. DOI: 10.26226/morressier.5af300b3738ab10027aa9a90. PMID: 32082529. PMCID: PMC7020946.
6. Khan Z, Goldberg JM. 2018; Hysteroscopic management of Asherman's syndrome. J Minim Invasive Gynecol. 25:218–228. DOI: 10.1016/j.jmig.2017.09.020. PMID: 29024798.
Article
7. Bosteels J, Weyers S, Kasius J, Broekmans FJ, Mol BW, D'Hooghe TM. 2015; Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility. Cochrane Database Syst Rev. (11):CD011110. DOI: 10.1002/14651858.CD011110.pub2. PMID: 26559098.
Article
8. Zheng F, Xin X, He F, Liu J, Cui Y. 2020; Meta-analysis on the use of hyaluronic acid gel to prevent intrauterine adhesion after intrauterine operations. Exp Ther Med. 19:2672–2678. DOI: 10.3892/etm.2020.8483. PMID: 32256748. PMCID: PMC7086218.
Article
9. Mao X, Tao Y, Cai R, Zhang J, Gao H, Chen Q, Kuang Y, Zhang S. 2020; Cross-linked hyaluronan gel to improve pregnancy rate of women patients with moderate to severe intrauterine adhesion treated with IVF: a randomized controlled trial. Arch Gynecol Obstet. 301:199–205. DOI: 10.1007/s00404-019-05368-6. PMID: 31883044.
Article
10. Zhang L, Wang M, Zhang Q, Zhao W, Yang B, Shang H, Shang X, Ma Y, Wang B, Feng L. 2019; Estrogen therapy before hysteroscopic adhesiolysis improves the fertility outcome in patients with intrauterine adhesions. Arch Gynecol Obstet. 300:933–939. DOI: 10.1007/s00404-019-05249-y. PMID: 31350664.
Article
11. Guo EJ, Chung JPW, Poon LCY, Li TC. 2019; Reproductive outcomes after surgical treatment of asherman syndrome: a systematic review. Best Pract Res Clin Obstet Gynaecol. 59:98–114. DOI: 10.1016/j.bpobgyn.2018.12.009. PMID: 30713131.
Article
12. Patki SM, Kadam SS, Phadnis SM, Bhonde RR. 2008; Who is the culprit for post menopausal syndrome? Uterus/Ovary! Med Hypotheses. 71:382–385. DOI: 10.1016/j.mehy.2008.03.047. PMID: 18571872.
Article
13. Abudukeyoumu A, Li MQ, Xie F. 2020; Transforming growth factor-β1 in intrauterine adhesion. Am J Reprod Immunol. 84:e13262. DOI: 10.1111/aji.13262. PMID: 32379911.
Article
14. Zhang Z, Li S, Deng J, Yang S, Xiang Z, Guo H, Xi H, Sang M, Zhang W. 2020; Aspirin inhibits endometrial fibrosis by suppressing the TGF-β1-Smad2/Smad3 pathway in intrauterine adhesions. Int J Mol Med. 45:1351–1360. DOI: 10.3892/ijmm.2020.4506. PMID: 32323728. PMCID: PMC7138280.
15. Liu L, Chen G, Chen T, Shi W, Hu H, Song K, Huang R, Cai H, He Y. 2020; si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway. Stem Cell Res Ther. 11:479. DOI: 10.1186/s13287-020-01990-3. PMID: 33176855. PMCID: PMC7656702. PMID: 88aba6a5bb38493585cf2b1d19ba9e7a.
Article
16. Xue X, Chen Q, Zhao G, Zhao JY, Duan Z, Zheng PS. 2015; The overexpression of TGF-β and CCN2 in intrauterine adhesions involves the NF-κB signaling pathway. PLoS One. 10:e0146159. DOI: 10.1371/journal.pone.0146159. PMID: 26719893. PMCID: PMC4697802. PMID: b49a82f7338d40e48a1d4009cf2f3d32.
Article
17. Zhu HY, Ge TX, Pan YB, Zhang SY. 2017; Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion. Chin Med J (Engl). 130:2732–2737. DOI: 10.4103/0366-6999.218013. PMID: 29133764. PMCID: PMC5695061. PMID: 9fe0fda23016448a91c7ce3198eee155.
18. Ai Y, Chen M, Liu J, Ren L, Yan X, Feng Y. 2020; lncRNA TUG1 promotes endometrial fibrosis and inflammation by sponging miR-590-5p to regulate Fasl in intrauterine adhesions. Int Immunopharmacol. 86:106703. DOI: 10.1016/j.intimp.2020.106703. PMID: 32599321.
Article
19. Fang ZA, He Y, Sun C, Zhan L, Zhou G, Wei B, Sun S. 2021; Expression and potential role of CXCL5 in the pathogenesis of intrauterine adhesions. J Int Med Res. 49:300060521997718. DOI: 10.1177/0300060521997718. PMID: 33752504. PMCID: PMC7995464. PMID: a855571f68b34b879fca0a958f40873b.
Article
20. Kletukhina S, Neustroeva O, James V, Rizvanov A, Gomzikova M. 2019; Role of mesenchymal stem cell-derived extracellular vesicles in epithelial-mesenchymal transition. Int J Mol Sci. 20:4813. DOI: 10.3390/ijms20194813. PMID: 31569731. PMCID: PMC6801704. PMID: a1a2b7c36b6f4340864d1de66fafef09.
Article
21. Song M, Cao C, Zhou Z, Yao S, Jiang P, Wang H, Zhao G, Hu Y. 2021; HMGA2-induced epithelial-mesenchymal transition is reversed by let-7d in intrauterine adhesions. Mol Hum Reprod. 27:gaaa074. DOI: 10.1093/molehr/gaaa074. PMID: 33237328. PMCID: PMC7864003.
Article
22. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, Wu Q, Zhu H, Wang H, Dai C, Wang J, Li R, Cao Y, Lv H, Liu D, Dai J, Zhou Y, Hu Y. 2021; circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. Elife. 10:e65735. DOI: 10.7554/eLife.65735. PMID: 34132637. PMCID: PMC8208816. PMID: 5b72829e3f4949068cbd832373d75130.
Article
23. Guo LP, Chen LM, Chen F, Jiang NH, Sui L. 2019; Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion. Am J Transl Res. 11:4726–4737.
24. Maruyama T. 2014; Endometrial stem/progenitor cells. J Obstet Gynaecol Res. 40:2015–2022. DOI: 10.1111/jog.12501. PMID: 25160689.
Article
25. Gargett CE, Nguyen HP, Ye L. 2012; Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 13:235–251. DOI: 10.1007/s11154-012-9221-9. PMID: 22847235.
Article
26. Min J, Lu N, Huang S, Chai X, Wang S, Peng L, Wang J. 2021; Phenotype and biological characteristics of endometrial mesenchymal stem/stromal cells: a comparison between intrauterine adhesion patients and healthy women. Am J Reprod Immunol. 85:e13379. DOI: 10.1111/aji.13379. PMID: 33206449.
Article
27. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. 2002; Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 13:4279–4295. DOI: 10.1091/mbc.e02-02-0105. PMID: 12475952. PMCID: PMC138633.
Article
28. Lai RC, Yeo RW, Lim SK. 2015; Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 40:82–88. DOI: 10.1016/j.semcdb.2015.03.001. PMID: 25765629.
Article
29. Rotter N, Oder J, Schlenke P, Lindner U, Böhrnsen F, Kramer J, Rohwedel J, Huss R, Brandau S, Wollenberg B, Lang S. 2008; Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 17:509–518. DOI: 10.1089/scd.2007.0180. PMID: 18522496.
Article
30. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, Xu J. 2018; Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 9:320. DOI: 10.1186/s13287-018-1069-9. PMID: 30463593. PMCID: PMC6249826. PMID: 46bcd04743644d04aff8d8b48927df76.
Article
31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999; Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. DOI: 10.1126/science.284.5411.143. PMID: 10102814.
Article
32. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. 2009; Intrave-nous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 5:54–63. DOI: 10.1016/j.stem.2009.05.003. PMID: 19570514. PMCID: PMC4154377.
Article
33. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. 2002; Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 105:93–98. DOI: 10.1161/hc0102.101442. PMID: 11772882.
Article
34. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. 2006; Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20:661–669. DOI: 10.1096/fj.05-5211com. PMID: 16581974.
Article
35. Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H, Hamblin MR. 2019; Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther. 10:340. DOI: 10.1186/s13287-019-1445-0. PMID: 31753036. PMCID: PMC6873475. PMID: a05e1ba4d8374315a78cb8fdb75feede.
Article
36. Røsland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lønning PE, Bjerkvig R, Schichor C. 2009; Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69:5331–5339. DOI: 10.1158/0008-5472.CAN-08-4630. PMID: 19509230.
Article
37. Gou S, Wang C, Liu T, Wu H, Xiong J, Zhou F, Zhao G. 2010; Spontaneous differentiation of murine bone marrow-derived mesenchymal stem cells into adipocytes without malignant transformation after long-term culture. Cells Tissues Organs. 191:185–192. DOI: 10.1159/000240246. PMID: 19776549.
Article
38. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F. 2007; Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 67:9142–9149. DOI: 10.1158/0008-5472.CAN-06-4690. PMID: 17909019.
Article
39. Zimmerlin L, Donnenberg AD, Rubin JP, Basse P, Landreneau RJ, Donnenberg VS. 2011; Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A. 17:93–106. DOI: 10.1089/ten.tea.2010.0248. PMID: 20673000. PMCID: PMC3011910.
Article
40. Dai X, Wang Y, Dong X, Sheng M, Wang H, Shi J, Sheng Y, Liu L, Jiang Q, Chen Y, Wu B, Yang X, Cheng H, Kang C, Dong J. 2020; Downregulation of miRNA-146a-5p promotes malignant transformation of mesenchymal stromal/stem cells by glioma stem-like cells. Aging (Albany NY). 12:9151–9172. DOI: 10.18632/aging.103185. PMID: 32452829. PMCID: PMC7288935.
Article
41. Dahl JA, Duggal S, Coulston N, Millar D, Melki J, Shahdadfar A, Brinchmann JE, Collas P. 2008; Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol. 52:1033–1042. DOI: 10.1387/ijdb.082663jd. PMID: 18956336.
Article
42. Centeno CJ, Schultz JR, Cheever M, Freeman M, Faulkner S, Robinson B, Hanson R. 2011; Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 6:368–378. DOI: 10.2174/157488811797904371. PMID: 22023622.
Article
43. Peeters CM, Leijs MJ, Reijman M, van Osch GJ, Bos PK. 2013; Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthritis Cartilage. 21:1465–1473. DOI: 10.1016/j.joca.2013.06.025. PMID: 23831631.
Article
44. Hyun JS, Tran MC, Wong VW, Chung MT, Lo DD, Montoro DT, Wan DC, Longaker MT. 2013; Enhancing stem cell survival in vivo for tissue repair. Biotechnol Adv. 31:736–743. DOI: 10.1016/j.biotechadv.2012.11.003. PMID: 23153460.
Article
45. Ścieżyńska A, Soszyńska M, Szpak P, Krześniak N, Malejczyk J, Kalaszczyńska I. 2021; Influence of hypothermic storage fluids on mesenchymal stem cell stability: a comprehensive review and personal experience. Cells. 10:1043. DOI: 10.3390/cells10051043. PMID: 33925059. PMCID: PMC8146384. PMID: 0ca60834551e4b3c911ce77b7a8ee980.
Article
46. Jeyaram A, Jay SM. 2017; Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 20:1. DOI: 10.1208/s12248-017-0160-y. PMID: 29181730. PMCID: PMC6582961.
Article
47. Dreyer F, Baur A. 2016; Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol. 1448:201–216. DOI: 10.1007/978-1-4939-3753-0_15. PMID: 27317183.
Article
48. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. 2013; Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 113:1–11. DOI: 10.1007/s11060-013-1084-8. PMID: 23456661. PMCID: PMC5533094.
Article
49. Pegtel DM, Gould SJ. 2019; Exosomes. Annu Rev Biochem. 88:487–514. DOI: 10.1146/annurev-biochem-013118-111902. PMID: 31220978.
Article
50. Hessvik NP, Llorente A. 2018; Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. DOI: 10.1007/s00018-017-2595-9. PMID: 28733901. PMCID: PMC5756260.
Article
51. Ahmadi M, Rezaie J. 2020; Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications. J Transl Med. 18:249. DOI: 10.1186/s12967-020-02426-5. PMID: 32571337. PMCID: PMC7310379. PMID: a888c7c1bef8419eb3b0f370478a74df.
Article
52. Battistelli M, Falcieri E. 2020; Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology (Basel). 9:21. DOI: 10.3390/biology9010021. PMID: 31968627. PMCID: PMC7168913. PMID: a6682260edd545ad85534a64a39d42c2.
Article
53. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN. 2004; Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 31:114–121. DOI: 10.1165/rcmb.2003-0238OC. PMID: 14975938.
Article
54. Choi DS, Kim DK, Kim YK, Gho YS. 2015; Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 34:474–490. DOI: 10.1002/mas.21420. PMID: 24421117.
Article
55. O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. 2020; RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 21:585–606. DOI: 10.1038/s41580-020-0251-y. PMID: 32457507. PMCID: PMC7249041.
56. Abels ER, Breakefield XO. 2016; Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 36:301–312. DOI: 10.1007/s10571-016-0366-z. PMID: 27053351. PMCID: PMC5546313.
Article
57. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 2007; Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. DOI: 10.1038/ncb1596. PMID: 17486113.
Article
58. Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, Hill AF. 2016; Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 5:32945. DOI: 10.3402/jev.v5.32945. PMID: 27802845. PMCID: PMC5090131. PMID: f2a857be7d0a41bab6642985c7f9568a.
Article
59. Momen-Heravi F. 2017; Isolation of extracellular vesicles by ultracentrifugation. Methods Mol Biol. 1660:25–32. DOI: 10.1007/978-1-4939-7253-1_3. PMID: 28828645.
Article
60. Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, Manček-Keber M, Ferdinandy P, Buzás EI, Giricz Z. 2018; Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol. 9:1479. DOI: 10.3389/fphys.2018.01479. PMID: 30405435. PMCID: PMC6206048. PMID: 1af025ed0b564df6a1f9569fd70a7f8d.
Article
61. Deregibus MC, Figliolini F, D'Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G. 2016; Charge-based precipitation of extracellular vesicles. Int J Mol Med. 38:1359–1366. DOI: 10.3892/ijmm.2016.2759. PMID: 28025988. PMCID: PMC5065305.
Article
62. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. 2018; Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int. 2018:8545347. DOI: 10.1155/2018/8545347. PMID: 29662902. PMCID: PMC5831698.
Article
63. Nordin JZ, Lee Y, Vader P, Mäger I, Johansson HJ, Heusermann W, Wiklander OP, Hällbrink M, Seow Y, Bultema JJ, Gilthorpe J, Davies T, Fairchild PJ, Gabrielsson S, Meisner-Kober NC, Lehtiö J, Smith CI, Wood MJ, El Andaloussi S. 2015; Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. 11:879–883. DOI: 10.1016/j.nano.2015.01.003. PMID: 25659648.
Article
64. Filipe V, Hawe A, Jiskoot W. 2010; Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 27:796–810. DOI: 10.1007/s11095-010-0073-2. PMID: 20204471. PMCID: PMC2852530.
Article
65. Arab T, Mallick ER, Huang Y, Dong L, Liao Z, Zhao Z, Gololobova O, Smith B, Haughey NJ, Pienta KJ, Slusher BS, Tarwater PM, Tosar JP, Zivkovic AM, Vreeland WN, Paulaitis ME, Witwer KW. 2021; Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. J Extracell Vesicles. 10:e12079. DOI: 10.1002/jev2.12079. PMID: 33850608. PMCID: PMC8023330. PMID: fd746bab0cb349b79fa923c7436a96ca.
Article
66. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL. 2011; Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 7:780–788. DOI: 10.1016/j.nano.2011.04.003. PMID: 21601655. PMCID: PMC3280380.
Article
67. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. 2019; Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 8:307. DOI: 10.3390/cells8040307. PMID: 30987213. PMCID: PMC6523673. PMID: 8da0c82be7344eddb949904818959d79.
Article
68. Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. 2017; The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 18:1153. DOI: 10.3390/ijms18061153. PMID: 28555055. PMCID: PMC5485977. PMID: f13434c56c1640fb8b5b09dc0ac72616.
Article
69. Jung MK, Mun JY. 2018; Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp. (131):56482. DOI: 10.3791/56482. PMID: 29364263. PMCID: PMC5908436.
Article
70. Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H. 2016; Integrated magneto-electrochemical sensor for exosome analysis. ACS Nano. 10:1802–1829. DOI: 10.1021/acsnano.5b07584. PMID: 26808216. PMCID: PMC4802494.
Article
71. Bart G, Fischer D, Samoylenko A, Zhyvolozhnyi A, Stehantsev P, Miinalainen I, Kaakinen M, Nurmi T, Singh P, Kosamo S, Rannaste L, Viitala S, Hiltunen J, Vainio SJ. 2021; Characterization of nucleic acids from extracellular vesicle-enriched human sweat. BMC Genomics. 22:425. DOI: 10.1186/s12864-021-07733-9. PMID: 34103018. PMCID: PMC8188706. PMID: 6e66c0d84d574d919a681f17335a4314.
Article
72. Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. 2020; Technologies and standardization in research on extracellular vesicles. Trends Biotechnol. 38:1066–1098. DOI: 10.1016/j.tibtech.2020.05.012. PMID: 32564882. PMCID: PMC7302792.
Article
73. Zhang S, Chang Q, Li P, Tong X, Feng Y, Hao X, Zhang X, Yuan Z, Tan J. 2021; Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model. Nanoscale. 13:7334–7347. DOI: 10.1039/D0NR08942G. PMID: 33889891.
Article
74. Xiao B, Zhu Y, Huang J, Wang T, Wang F, Sun S. 2019; Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis. Biol Open. 8:bio039958. DOI: 10.1242/bio.039958. PMID: 30890521. PMCID: PMC6550064. PMID: 515cc913cb594b4298fcb8cc02e83362.
75. Yao Y, Chen R, Wang G, Zhang Y, Liu F. 2019; Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther. 10:225. DOI: 10.1186/s13287-019-1332-8. PMID: 31358049. PMCID: PMC6664513. PMID: 73173f4406cc404fa92338c7533c55cc.
Article
76. Tan Q, Xia D, Ying X. 2020; miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion. Int J Stem Cells. 13:414–423. DOI: 10.15283/ijsc20049. PMID: 33250449. PMCID: PMC7691861.
Article
77. Zhao S, Qi W, Zheng J, Tian Y, Qi X, Kong D, Zhang J, Huang X. 2020; Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod Sci. 27:1266–1275. DOI: 10.1007/s43032-019-00112-6. PMID: 31933162.
Article
78. Shao X, Qin J, Wan C, Cheng J, Wang L, Ai G, Cheng Z, Tong X. 2021; ADSC exosomes mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p. Front Genet. 12:679643. DOI: 10.3389/fgene.2021.679643. PMID: 34178037. PMCID: PMC8220143. PMID: 5f67254ffa2345e280350a9983339eef.
Article
79. Xin L, Lin X, Zhou F, Li C, Wang X, Yu H, Pan Y, Fei H, Ma L, Zhang S. 2020; A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater. 113:252–266. DOI: 10.1016/j.actbio.2020.06.029. PMID: 32574858.
Article
80. Ebrahim N, Mostafa O, El Dosoky RE, Ahmed IA, Saad AS, Mostafa A, Sabry D, Ibrahim KA, Farid AS. 2018; Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Res Ther. 9:175. DOI: 10.1186/s13287-018-0924-z. PMID: 29954457. PMCID: PMC6027762. PMID: 0d6a44fdd77a4673a17df3bdf21099da.
Article
81. Saribas GS, Ozogul C, Tiryaki M, Alpaslan Pinarli F, Hamdemir Kilic S. 2020; Effects of uterus derived mesenchymal stem cells and their exosomes on asherman's syndrome. Acta Histochem. 122:151465. DOI: 10.1016/j.acthis.2019.151465. PMID: 31776004.
Article
82. Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F. 2017; Extracellular vesicles in angiogenesis. Circ Res. 120:1658–1673. DOI: 10.1161/CIRCRESAHA.117.309681. PMID: 28495996. PMCID: PMC5426696.
Article
83. Casado-Díaz A, Quesada-Gómez JM, Dorado G. 2020; Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing. Front Bioeng Biotechnol. 8:146. DOI: 10.3389/fbioe.2020.00146. PMID: 32195233. PMCID: PMC7062641. PMID: f68f4d1c27b74aad9c3fcaa6b70a798c.
Article
84. Zhang P, Yeo JC, Lim CT. 2019; Advances in technologies for purification and enrichment of extracellular vesicles. SLAS Technol. 24:477–488. DOI: 10.1177/2472630319846877. PMID: 31088199.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr