7. Bosteels J, Weyers S, Kasius J, Broekmans FJ, Mol BW, D'Hooghe TM. 2015; Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility. Cochrane Database Syst Rev. (11):CD011110. DOI:
10.1002/14651858.CD011110.pub2. PMID:
26559098.
Article
8. Zheng F, Xin X, He F, Liu J, Cui Y. 2020; Meta-analysis on the use of hyaluronic acid gel to prevent intrauterine adhesion after intrauterine operations. Exp Ther Med. 19:2672–2678. DOI:
10.3892/etm.2020.8483. PMID:
32256748. PMCID:
PMC7086218.
Article
9. Mao X, Tao Y, Cai R, Zhang J, Gao H, Chen Q, Kuang Y, Zhang S. 2020; Cross-linked hyaluronan gel to improve pregnancy rate of women patients with moderate to severe intrauterine adhesion treated with IVF: a randomized controlled trial. Arch Gynecol Obstet. 301:199–205. DOI:
10.1007/s00404-019-05368-6. PMID:
31883044.
Article
10. Zhang L, Wang M, Zhang Q, Zhao W, Yang B, Shang H, Shang X, Ma Y, Wang B, Feng L. 2019; Estrogen therapy before hysteroscopic adhesiolysis improves the fertility outcome in patients with intrauterine adhesions. Arch Gynecol Obstet. 300:933–939. DOI:
10.1007/s00404-019-05249-y. PMID:
31350664.
Article
11. Guo EJ, Chung JPW, Poon LCY, Li TC. 2019; Reproductive outcomes after surgical treatment of asherman syndrome: a systematic review. Best Pract Res Clin Obstet Gynaecol. 59:98–114. DOI:
10.1016/j.bpobgyn.2018.12.009. PMID:
30713131.
Article
13. Abudukeyoumu A, Li MQ, Xie F. 2020; Transforming growth factor-β1 in intrauterine adhesion. Am J Reprod Immunol. 84:e13262. DOI:
10.1111/aji.13262. PMID:
32379911.
Article
14. Zhang Z, Li S, Deng J, Yang S, Xiang Z, Guo H, Xi H, Sang M, Zhang W. 2020; Aspirin inhibits endometrial fibrosis by suppressing the TGF-β1-Smad2/Smad3 pathway in intrauterine adhesions. Int J Mol Med. 45:1351–1360. DOI:
10.3892/ijmm.2020.4506. PMID:
32323728. PMCID:
PMC7138280.
18. Ai Y, Chen M, Liu J, Ren L, Yan X, Feng Y. 2020; lncRNA TUG1 promotes endometrial fibrosis and inflammation by sponging miR-590-5p to regulate Fasl in intrauterine adhesions. Int Immunopharmacol. 86:106703. DOI:
10.1016/j.intimp.2020.106703. PMID:
32599321.
Article
21. Song M, Cao C, Zhou Z, Yao S, Jiang P, Wang H, Zhao G, Hu Y. 2021; HMGA2-induced epithelial-mesenchymal transition is reversed by let-7d in intrauterine adhesions. Mol Hum Reprod. 27:gaaa074. DOI:
10.1093/molehr/gaaa074. PMID:
33237328. PMCID:
PMC7864003.
Article
22. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, Wu Q, Zhu H, Wang H, Dai C, Wang J, Li R, Cao Y, Lv H, Liu D, Dai J, Zhou Y, Hu Y. 2021; circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. Elife. 10:e65735. DOI:
10.7554/eLife.65735. PMID:
34132637. PMCID:
PMC8208816. PMID:
5b72829e3f4949068cbd832373d75130.
Article
23. Guo LP, Chen LM, Chen F, Jiang NH, Sui L. 2019; Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion. Am J Transl Res. 11:4726–4737.
26. Min J, Lu N, Huang S, Chai X, Wang S, Peng L, Wang J. 2021; Phenotype and biological characteristics of endometrial mesenchymal stem/stromal cells: a comparison between intrauterine adhesion patients and healthy women. Am J Reprod Immunol. 85:e13379. DOI:
10.1111/aji.13379. PMID:
33206449.
Article
27. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. 2002; Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 13:4279–4295. DOI:
10.1091/mbc.e02-02-0105. PMID:
12475952. PMCID:
PMC138633.
Article
29. Rotter N, Oder J, Schlenke P, Lindner U, Böhrnsen F, Kramer J, Rohwedel J, Huss R, Brandau S, Wollenberg B, Lang S. 2008; Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 17:509–518. DOI:
10.1089/scd.2007.0180. PMID:
18522496.
Article
31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999; Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. DOI:
10.1126/science.284.5411.143. PMID:
10102814.
Article
32. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. 2009; Intrave-nous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 5:54–63. DOI:
10.1016/j.stem.2009.05.003. PMID:
19570514. PMCID:
PMC4154377.
Article
33. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. 2002; Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 105:93–98. DOI:
10.1161/hc0102.101442. PMID:
11772882.
Article
34. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. 2006; Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20:661–669. DOI:
10.1096/fj.05-5211com. PMID:
16581974.
Article
36. Røsland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lønning PE, Bjerkvig R, Schichor C. 2009; Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69:5331–5339. DOI:
10.1158/0008-5472.CAN-08-4630. PMID:
19509230.
Article
37. Gou S, Wang C, Liu T, Wu H, Xiong J, Zhou F, Zhao G. 2010; Spontaneous differentiation of murine bone marrow-derived mesenchymal stem cells into adipocytes without malignant transformation after long-term culture. Cells Tissues Organs. 191:185–192. DOI:
10.1159/000240246. PMID:
19776549.
Article
38. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F. 2007; Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 67:9142–9149. DOI:
10.1158/0008-5472.CAN-06-4690. PMID:
17909019.
Article
39. Zimmerlin L, Donnenberg AD, Rubin JP, Basse P, Landreneau RJ, Donnenberg VS. 2011; Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A. 17:93–106. DOI:
10.1089/ten.tea.2010.0248. PMID:
20673000. PMCID:
PMC3011910.
Article
40. Dai X, Wang Y, Dong X, Sheng M, Wang H, Shi J, Sheng Y, Liu L, Jiang Q, Chen Y, Wu B, Yang X, Cheng H, Kang C, Dong J. 2020; Downregulation of miRNA-146a-5p promotes malignant transformation of mesenchymal stromal/stem cells by glioma stem-like cells. Aging (Albany NY). 12:9151–9172. DOI:
10.18632/aging.103185. PMID:
32452829. PMCID:
PMC7288935.
Article
41. Dahl JA, Duggal S, Coulston N, Millar D, Melki J, Shahdadfar A, Brinchmann JE, Collas P. 2008; Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol. 52:1033–1042. DOI:
10.1387/ijdb.082663jd. PMID:
18956336.
Article
42. Centeno CJ, Schultz JR, Cheever M, Freeman M, Faulkner S, Robinson B, Hanson R. 2011; Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 6:368–378. DOI:
10.2174/157488811797904371. PMID:
22023622.
Article
43. Peeters CM, Leijs MJ, Reijman M, van Osch GJ, Bos PK. 2013; Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthritis Cartilage. 21:1465–1473. DOI:
10.1016/j.joca.2013.06.025. PMID:
23831631.
Article
48. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. 2013; Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 113:1–11. DOI:
10.1007/s11060-013-1084-8. PMID:
23456661. PMCID:
PMC5533094.
Article
53. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN. 2004; Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 31:114–121. DOI:
10.1165/rcmb.2003-0238OC. PMID:
14975938.
Article
54. Choi DS, Kim DK, Kim YK, Gho YS. 2015; Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 34:474–490. DOI:
10.1002/mas.21420. PMID:
24421117.
Article
55. O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. 2020; RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 21:585–606. DOI:
10.1038/s41580-020-0251-y. PMID:
32457507. PMCID:
PMC7249041.
57. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 2007; Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. DOI:
10.1038/ncb1596. PMID:
17486113.
Article
60. Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, Manček-Keber M, Ferdinandy P, Buzás EI, Giricz Z. 2018; Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol. 9:1479. DOI:
10.3389/fphys.2018.01479. PMID:
30405435. PMCID:
PMC6206048. PMID:
1af025ed0b564df6a1f9569fd70a7f8d.
Article
61. Deregibus MC, Figliolini F, D'Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G. 2016; Charge-based precipitation of extracellular vesicles. Int J Mol Med. 38:1359–1366. DOI:
10.3892/ijmm.2016.2759. PMID:
28025988. PMCID:
PMC5065305.
Article
62. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. 2018; Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int. 2018:8545347. DOI:
10.1155/2018/8545347. PMID:
29662902. PMCID:
PMC5831698.
Article
63. Nordin JZ, Lee Y, Vader P, Mäger I, Johansson HJ, Heusermann W, Wiklander OP, Hällbrink M, Seow Y, Bultema JJ, Gilthorpe J, Davies T, Fairchild PJ, Gabrielsson S, Meisner-Kober NC, Lehtiö J, Smith CI, Wood MJ, El Andaloussi S. 2015; Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. 11:879–883. DOI:
10.1016/j.nano.2015.01.003. PMID:
25659648.
Article
64. Filipe V, Hawe A, Jiskoot W. 2010; Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 27:796–810. DOI:
10.1007/s11095-010-0073-2. PMID:
20204471. PMCID:
PMC2852530.
Article
65. Arab T, Mallick ER, Huang Y, Dong L, Liao Z, Zhao Z, Gololobova O, Smith B, Haughey NJ, Pienta KJ, Slusher BS, Tarwater PM, Tosar JP, Zivkovic AM, Vreeland WN, Paulaitis ME, Witwer KW. 2021; Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. J Extracell Vesicles. 10:e12079. DOI:
10.1002/jev2.12079. PMID:
33850608. PMCID:
PMC8023330. PMID:
fd746bab0cb349b79fa923c7436a96ca.
Article
66. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL. 2011; Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 7:780–788. DOI:
10.1016/j.nano.2011.04.003. PMID:
21601655. PMCID:
PMC3280380.
Article
69. Jung MK, Mun JY. 2018; Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp. (131):56482. DOI:
10.3791/56482. PMID:
29364263. PMCID:
PMC5908436.
Article
71. Bart G, Fischer D, Samoylenko A, Zhyvolozhnyi A, Stehantsev P, Miinalainen I, Kaakinen M, Nurmi T, Singh P, Kosamo S, Rannaste L, Viitala S, Hiltunen J, Vainio SJ. 2021; Characterization of nucleic acids from extracellular vesicle-enriched human sweat. BMC Genomics. 22:425. DOI:
10.1186/s12864-021-07733-9. PMID:
34103018. PMCID:
PMC8188706. PMID:
6e66c0d84d574d919a681f17335a4314.
Article
72. Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. 2020; Technologies and standardization in research on extracellular vesicles. Trends Biotechnol. 38:1066–1098. DOI:
10.1016/j.tibtech.2020.05.012. PMID:
32564882. PMCID:
PMC7302792.
Article
73. Zhang S, Chang Q, Li P, Tong X, Feng Y, Hao X, Zhang X, Yuan Z, Tan J. 2021; Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model. Nanoscale. 13:7334–7347. DOI:
10.1039/D0NR08942G. PMID:
33889891.
Article
76. Tan Q, Xia D, Ying X. 2020; miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion. Int J Stem Cells. 13:414–423. DOI:
10.15283/ijsc20049. PMID:
33250449. PMCID:
PMC7691861.
Article
77. Zhao S, Qi W, Zheng J, Tian Y, Qi X, Kong D, Zhang J, Huang X. 2020; Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod Sci. 27:1266–1275. DOI:
10.1007/s43032-019-00112-6. PMID:
31933162.
Article
79. Xin L, Lin X, Zhou F, Li C, Wang X, Yu H, Pan Y, Fei H, Ma L, Zhang S. 2020; A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation. Acta Biomater. 113:252–266. DOI:
10.1016/j.actbio.2020.06.029. PMID:
32574858.
Article
80. Ebrahim N, Mostafa O, El Dosoky RE, Ahmed IA, Saad AS, Mostafa A, Sabry D, Ibrahim KA, Farid AS. 2018; Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Res Ther. 9:175. DOI:
10.1186/s13287-018-0924-z. PMID:
29954457. PMCID:
PMC6027762. PMID:
0d6a44fdd77a4673a17df3bdf21099da.
Article
81. Saribas GS, Ozogul C, Tiryaki M, Alpaslan Pinarli F, Hamdemir Kilic S. 2020; Effects of uterus derived mesenchymal stem cells and their exosomes on asherman's syndrome. Acta Histochem. 122:151465. DOI:
10.1016/j.acthis.2019.151465. PMID:
31776004.
Article
84. Zhang P, Yeo JC, Lim CT. 2019; Advances in technologies for purification and enrichment of extracellular vesicles. SLAS Technol. 24:477–488. DOI:
10.1177/2472630319846877. PMID:
31088199.
Article