Korean J healthc assoc Infect Control Prev.  2023 Jun;28(1):99-105. 10.14192/kjicp.2023.28.1.99.

Efficacy of Disinfection Using Activated Ionized Hydrogen Peroxide System for Carbapenemase-producing Enterobacterales and Vancomycin Resistant Enterococci

Affiliations
  • 1Department of Infectious Diseases, Keimyung University Dongsan Hospital, Daegu, Korea
  • 2Infection Control Office, Keimyung University Daegu Dongsan Hospital, Daegu, Korea
  • 3Department of Laboratory Medicine, Keimyung University Daegu Dongsan Hospital, Daegu, Korea
  • 4Department of Laboratory Medicine, Keimyung University Dongsan Hospital, Daegu, Korea

Abstract

Background
Multidrug-resistant pathogens such as carbapenemase-producing Enterobacterales (CPE) and vancomycin-resistant enterococci (VRE) are of concern in hospitals worldwide. Hydrogen peroxide sterilizer is one of the ‘no-touch’ disinfection systems. In this study, we aimed to confirm the efficacy of the activated ionized hydrogen peroxide (AIHP) system space sterilizer developed in South Korea.
Methods
Eighty sheets contaminated with CPE and VRE were placed in each room. The AIHP space sterilizer (MUGYUN, SUNGSAM, Korea) was used for sterilization. After the intervention, the mediums were incubated at 37℃ for 24 h, and colony-forming units (CFUs) were analyzed.
Results
The median number of strains on the sheets before sterilization was 2.64×106 CFUs (6.42 log10 inoculum). The median log 10 reduction was 7.12 and 6.91 for CPE and VRE, respectively, after the intervention.
Conclusion
The AIHP space sterilizer developed in Korea was effective for the sterilization of VRE and CPE in the healthcare environment.

Keyword

Carbapenem-resistant enterobacteriaceae; Disinfection; Vancomycin-resistant enterococci

Figure

  • Fig. 1 Design of room showing positioning of AIHP space sterilizer, petri dishes and biological indicators. Abbreviations: AIHP, Activated Ionized Hydrogen Peroxide; CPE, Carbapenemase-producing Enterobacteriales; VRE, Vancomycin-resistant enterococci.


Reference

1. Nordmann P, Naas T, Poirel L. 2011; Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 17:1791–8. DOI: 10.3201/eid1710.110655. PMID: 22000347. PMCID: PMC3310682.
2. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, et al. 2020; Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012-2017. N Engl J Med. 382:1309–19. DOI: 10.1056/NEJMoa1914433. PMID: 32242356.
Article
3. Centers for Disease Control. Facility guidance for control of carbapenem-resistant enterobacteriaceae (CRE). https://www.cdc.gov/hai/pdfs/cre/CRE-guidance-508.pdf. (Updated on November 2015).
4. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. 2001; Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 45:1151–61. Erratum in: Antimicrob Agents Chemother 2008;52:809. DOI: 10.1128/AAC.45.4.1151-1161.2001. PMID: 11257029. PMCID: PMC90438.
Article
5. Cheah AL, Spelman T, Liew D, Peel T, Howden BP, Spelman D, et al. 2013; Enterococcal bacteraemia: factors influencing mortality, length of stay and costs of hospitalization. Clin Microbiol Infect. 19:E181–9. DOI: 10.1111/1469-0691.12132. PMID: 23398607.
Article
6. Frakking FNJ, Bril WS, Sinnige JC, Klooster JEV, de Jong BAW, van Hannen EJ, et al. 2018; Recommendations for the successful control of a large outbreak of vancomycin-resistant Enterococcus faecium in a non-endemic hospital setting. J Hosp Infect. 100:e216–25. DOI: 10.1016/j.jhin.2018.02.016. PMID: 29475013.
Article
7. Goodman ER, Platt R, Bass R, Onderdonk AB, Yokoe DS, Huang SS. 2008; Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol. 29:593–9. DOI: 10.1086/588566. PMID: 18624666. PMCID: PMC2670228.
8. Carling PC, Bartley JM. 2010; Evaluating hygienic cleaning in health care settings: what you do not know can harm your patients. Am J Infect Control. 38(5 Suppl 1):S41–50. DOI: 10.1016/j.ajic.2010.03.004. PMID: 20569855.
Article
9. Boyce JM. 2016; Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control. 5:10. DOI: 10.1186/s13756-016-0111-x. PMID: 27069623. PMCID: PMC4827199.
Article
10. Otter JA, Yezli S, Perl TM, Barbut F, French GL. 2013; The role of 'no-touch' automated room disinfection systems in infection prevention and control. J Hosp Infect. 83:1–13. DOI: 10.1016/j.jhin.2012.10.002. PMID: 23195691.
11. Otter JA, Yezli S, Perl TM, Barbut F, French GL. Walker JT, editor. 2014. A guide to no-touch automated room disinfection (NTD) systems. Decontamination in hospitals and healthcare. Woodhead Publishing;Cambridge: p. 413–60. DOI: 10.1533/9780857096692.2.413. PMCID: PMC7152068.
Article
12. Park SY, Lee JY, Kim EJ, Kwak SH, Hong MJ, Lim YJ, et al. 2021; Comparison of the microbiological efficacy of disinfection using ultraviolet and hydrogen peroxide system for carbapenemaseproducing Enterobacteriaceae in a healthcare setting. Korean J healthc assoc Infect Control Prev. 26:31–8. DOI: 10.14192/kjicp.2021.26.1.31.
Article
13. Weber DJ, Rutala WA, Anderson DJ, Chen LF, Sickbert-Bennett EE, Boyce JM. 2016; Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: focus on clinical trials. Am J Infect Control. 44(5 Suppl):e77–84. DOI: 10.1016/j.ajic.2015.11.015. PMID: 27131140. PMCID: PMC7132689.
Article
14. Truitt CL, Runyan DA, Stern JJ, Tobin C, Goldwater W, Madsen R. 2022; Evaluation of an aerosolized hydrogen peroxide disinfection system for the reduction of Clostridioides difficile hospital infection rates over a 10 year period. Am J Infect Control. 50:409–13. DOI: 10.1016/j.ajic.2021.11.021. PMID: 35307211.
Article
15. Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson AP. 2016; Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect. 93:70–7. DOI: 10.1016/j.jhin.2016.01.016. PMID: 26944907.
Article
16. Christie-Holmes N, Tyli R, Budylowski P, Guvenc F, Weiner A, Poon B, et al. 2021; Vapourized hydrogen peroxide decontamination in a hospital setting inactivates SARS-CoV-2 and HCoV-229E without compromising filtration efficiency of unexpired N95 respirators. Am J Infect Control. 49:1227–31. DOI: 10.1016/j.ajic.2021.07.012. PMID: 34320409. PMCID: PMC8310574.
Article
17. Kelly S, Schnugh D, Thomas T. 2022; Effectiveness of ultraviolet-C vs aerosolized hydrogen peroxide in ICU terminal disinfection. J Hosp Infect. 121:114–9. DOI: 10.1016/j.jhin.2021.12.004. PMID: 34915051.
Article
18. Holmdahl T, Lanbeck P, Wullt M, Walder MH. 2011; A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infect Control Hosp Epidemiol. 32:831–6. DOI: 10.1086/661104. PMID: 21828962.
Article
19. Fu TY, Gent P, Kumar V. 2012; Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect. 80:199–205. DOI: 10.1016/j.jhin.2011.11.019. PMID: 22306442.
Article
20. Otter JA, French GL. 2009; Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J Clin Microbiol. 47:205–7. DOI: 10.1128/JCM.02004-08. PMID: 18971364. PMCID: PMC2620839.
Article
21. Otter JA, Yezli S, French GL. 2012; Impact of the suspending medium on susceptibility of meticillin-resistant Staphylococcus aureus to hydrogen peroxide vapour decontamination. J Hosp Infect. 82:213–5. DOI: 10.1016/j.jhin.2012.08.006. PMID: 23017382.
Article
22. Otter JA, Yezli S, Schouten MA, van Zanten AR, Houmes- Zielman G, Nohlmans-Paulssen MK. 2010; Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak. Am J Infect Control. 38:754–6. DOI: 10.1016/j.ajic.2010.03.010. PMID: 20605263.
Article
23. Lemmen S, Scheithauer S, Häfner H, Yezli S, Mohr M, Otter JA. 2015; Evaluation of hydrogen peroxide vapor for the inactivation of nosocomial pathogens on porous and nonporous surfaces. Am J Infect Control. 43:82–5. DOI: 10.1016/j.ajic.2014.10.007. PMID: 25564129.
Article
24. Freyssenet C, Karlen S. 2019; Plasma-activated aerosolized hydrogen peroxide (aHP) in surface inactivation procedures. Appl Biosaf. 24:10–9. DOI: 10.1177/1535676018818559. PMID: 36034636. PMCID: PMC9093241.
Article
25. Choi J, Lee M, Lee Y, Song Y, Cho Y, Lim TH. 2021; Effectiveness of plasma-treated hydrogen peroxide mist disinfection in various hospital environments. Int J Environ Res Public Health. 18:9841. DOI: 10.3390/ijerph18189841. PMID: 34574763. PMCID: PMC8467658.
Article
26. National Institute of Food. Guideline for safety and sterilization performance evaluation of low-temperature sterilizer medidcal devices. https://www.mfds.go.kr/brd/m_1060/view.do?seq=12637&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=82. (Updated on 11 January 2017).
Full Text Links
  • KJHAICP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr