1. Iredell J, Brown J, Tagg K. 2016; Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ. 352:h6420. DOI:
10.1136/bmj.h6420. PMID:
26858245.
Article
4. Kim YH, Kwon D, Lee D. 2020; Reorganization of national notifiable infectious diseases classification system. Public Health Wkly Rep. 13:2–7.
6. Adeolu M, Alnajar S, Naushad S, S Gupta R. 2016; Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 66:5575–99. DOI:
10.1099/ijsem.0.001485. PMID:
27620848.
Article
7. Oren A, Garrity GM. 2017; Notification that new names of prokaryotes, new combinations and new taxonomic opinions have appeared in volume 66, part 11, of the IJSEM. Int J Syst Evol Microbiol. 67:179–82. DOI:
10.1099/ijsem.0.001766. PMID:
28287951.
Article
9. Lee E, Lee S, Yoon S, Lee Y. 2021; Number of cabapenem-resistant Enterobacteriaceae infections in Republic of Korea (2018-2020). Public Health Wkly Rep. 14:2765–72.
10. Jeong H, Hyun J, Lee Y. 2022; Characteristics of carbapenem-resistant Enterobacteriaceae (CRE) in the Republic of Korea, 2021. Public Health Wkly Rep. 15:2354–63.
11. Ayoub Moubareck C, Hammoudi Halat D. 2022; The collateral effects of COVID-19 pandemic on the status of carbapenemase-producing pathogens. Front Cell Infect Microbiol. 12:823626. DOI:
10.3389/fcimb.2022.823626. PMID:
35372126. PMCID:
PMC8968076.
Article
12. Pascale R, Bussini L, Gaibani P, Bovo F, Fornaro G, Lombardo D, et al. 2022; Carbapenem-resistant bacteria in an intensive care unit during the coronavirus disease 2019 (COVID-19) pandemic: a multicenter before-and-after cross-sectional study. Infect Control Hosp Epidemiol. 43:461–6. DOI:
10.1017/ice.2021.144. PMID:
33858547. PMCID:
PMC8365044.
Article
14. Tamma PD, Huang Y, Opene BN, Simner PJ. 2016; Determining the optimal carbapenem MIC that distinguishes carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 60:6425–9. DOI:
10.1128/AAC.00838-16. PMID:
27503655. PMCID:
PMC5038245.
Article
15. Adelman MW, Bower CW, Grass JE, Ansari UA, Soda EA, See I, et al. 2021; Distinctive features of ertapenem-mono-resistant carbapenem-resistant enterobacterales in the United States: a cohort study. Open Forum Infect Dis. 9:ofab643. DOI:
10.1093/ofid/ofab643. PMID:
35036469. PMCID:
PMC8754373.
Article
17. Cury AP, Andreazzi D, Maffucci M, Caiaffa-Junior HH, Rossi F. 2012; The modified Hodge test is a useful tool for ruling out Klebsiella pneumoniae carbapenemase. Clinics (Sao Paulo). 67:1427–31. DOI:
10.6061/clinics/2012(12)13. PMID:
23295597. PMCID:
PMC3521806.
Article
18. Girlich D, Poirel L, Nordmann P. 2012; Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 50:477–9. DOI:
10.1128/JCM.05247-11. PMID:
22116154. PMCID:
PMC3264163.
Article
19. Ribeiro VB, Linhares AR, Zavascki AP, Barth AL. 2014; Performance of quantification of modified Hodge test: an evaluation with Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae isolates. Biomed Res Int. 2014:139305. DOI:
10.1155/2014/139305. PMID:
24790988. PMCID:
PMC3984814.
20. Tsai YM, Wang S, Chiu HC, Kao CY, Wen LL. 2020; Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol. 20:315. DOI:
10.1186/s12866-020-02010-3. PMID:
33069233. PMCID:
PMC7568406.
Article
21. Sfeir MM, Hayden JA, Fauntleroy KA, Mazur C, Johnson JK, Simner PJ, et al. 2019; EDTA-modified carbapenem inactivation method: a phenotypic method for detecting metallo-β-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 57:e01757–18. DOI:
10.1128/JCM.01757-18. PMID:
30867235. PMCID:
PMC6498035.
23. Cho H, Kim JO, Choi JE, Lee H, Heo W, Cha YJ, et al. 2020; Performance evaluation of automated BD Phoenix NMIC-500 panel for carbapenemase detection in carbapenem-resistant and carbapenem-susceptible Enterobacterales. J Microbiol Methods. 177:106042. DOI:
10.1016/j.mimet.2020.106042. PMID:
32890572.
Article
24. Whitley V, Kircher S, Gill T, Hindler JA, O'Rourke S, Cooper C, et al. 2020; Multicenter evaluation of the BD Phoenix CPO detect test for detection and classification of carbapenemase-producing organisms in clinical isolates. J Clin Microbiol. 58:e01752–19. DOI:
10.1128/JCM.01752-19. PMID:
32132195. PMCID:
PMC7180248.
Article
25. Perry JD. 2017; A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin Microbiol Rev. 30:449–79. Erratum in: Clin Microbiol Rev 2017;30:vii. DOI:
10.1128/CMR.00097-16. PMID:
28122803. PMCID:
PMC5355637.
Article
26. Wilkinson KM, Winstanley TG, Lanyon C, Cummings SP, Raza MW, Perry JD. 2012; Comparison of four chromogenic culture media for carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 50:3102–4. DOI:
10.1128/JCM.01613-12. PMID:
22760041. PMCID:
PMC3421785.
Article
27. Amar M, Shalom O, Adler A. 2017; Comparative evaluation of a new commercial media, the CHROMAgar
TM mSuperCARBA
TM, for the detection of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 88:20–2. DOI:
10.1016/j.diagmicrobio.2017.02.004. PMID:
28254249.
28. Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. 2015; Evaluation of the RAPIDEC® CARBA NP, the Rapid CARB Screen® and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 70:3014–22. DOI:
10.1093/jac/dkv213. PMID:
26260131.
29. Song W, Yoo G, Hwang GY, Uh Y. 2016; Evaluation of diagnostic performance of RAPIDEC CARBA NP Test for carbapenemase-producing Enterobacteriaceae. Ann Clin Microbiol. 19:59–64. DOI:
10.5145/ACM.2016.19.3.59.
Article
30. Jenkins S, Ledeboer NA, Westblade LF, Burnham CA, Faron ML, Bergman Y, et al. 2020; Evaluation of NG-Test Carba 5 for rapid phenotypic detection and differentiation of five common carbapenemase families: results of a multicenter clinical evaluation. J Clin Microbiol. 58:e00344–20. DOI:
10.1128/JCM.00344-20. PMID:
32376668. PMCID:
PMC7315033.
Article
31. Lee S, Hur KH, Chung Y, Sung H, Kim MN. 2021; Evaluation of two commercial kits for rapid detection and typing of carbapenemase in carbapenem-resistant Enterobacterales. Ann Clin Microbiol. 24:45–53. DOI:
10.5145/ACM.2021.24.2.3.
Article
32. Dortet L, Tandé D, de Briel D, Bernabeu S, Lasserre C, Gregorowicz G, et al. 2018; MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother. 73:2352–9. DOI:
10.1093/jac/dky209. PMID:
29897463.
Article
33. Moore NM, Cantón R, Carretto E, Peterson LR, Sautter RL, Traczewski MM. 2017; Rapid identification of five classes of carbapenem resistance genes directly from rectal swabs by use of the Xpert Carba-R Assay. J Clin Microbiol. 55:2268–75. DOI:
10.1128/JCM.00137-17. PMID:
28515213. PMCID:
PMC5483930.
Article
34. Girlich D, Oueslati S, Bernabeu S, Langlois I, Begasse C, Arangia N, et al. 2020; Evaluation of the BD MAX Check-Points CPO Assay for the detection of carbapenemase producers directly from rectal swabs. J Mol Diagn. 22:294–300. DOI:
10.1016/j.jmoldx.2019.10.004. PMID:
31751674.
Article
38. An J, Lai K, Ma Y, Guo L, Ye L, Luo Y, et al. 2018; Emergence of multiple carbapenemase-producing organisms in single patients: an increasing threat to treatment of infection. J Antimicrob Chemother. 73:544–6. DOI:
10.1093/jac/dkx411. PMID:
29136151.
Article
40. Garduno A, Martín-Loeches I. 2022; Efficacy and appropriateness of novel antibiotics in response to antimicrobial-resistant gram-negative bacteria in patients with sepsis in the ICU. Expert Rev Anti Infect Ther. 20:513–31. DOI:
10.1080/14787210.2022.1999804. PMID:
34727820.
Article