1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep networks from decentralized data. Proc Mach Learn Res. 2017; 54:1273–82.
2. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, et al. Towards federated learning at scale: System design. In : Proceedings of Machine Learning and Systems (MLSys); 2019 Mar 31–Apr 2; Stanford, CA. p. 374–88.
3. Konecny J, McMahan HB, Yu FX, Richtrik P, Suresh AT, Bacon D. Federated learning: strategies for improving communication efficiency [Internet]. Ithaca (NY): arXiv.org;2016. [cited at 2023 Mar 20]. Available from:
https://doi.org/10.48550/arXiv.1610.05492.
Article
7. Vaid A, Jaladanki SK, Xu J, Teng S, Kumar A, Lee S, et al. Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: machine learning approach. JMIR Med Inform. 2021; 9(1):e24207.
https://doi.org/10.2196/24207.
Article
8. Li W, Milletari F, Xu D, Rieke N, Hancox J, Zhu W, et al. Privacy-preserving federated brain tumour segmentation. Suk HI, Liu M, Yan P, Lian C, editors. Machine learning in medical imaging. Cham, Switzerland: Springer;2019. 133–41.
https://doi.org/10.1007/978-3-030-32692-0_16.
Article
9. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020; 10(1):12598.
https://doi.org/10.1038/s41598-020-69250-1.
Article
10. Brown JS, Holmes JH, Shah K, Hall K, Lazarus R, Platt R. Distributed health data networks: a practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care. Med Care. 2010; 48(6 Suppl):S45–51.
https://doi.org/10.1097/MLR.0b013e3181d9919f.
Article
11. Hansen RA, Zeng P, Ryan P, Gao J, Sonawane K, Teeter B, et al. Exploration of heterogeneity in distributed research network drug safety analyses. Res Synth Methods. 2014; 5(4):352–70.
https://doi.org/10.1002/jrsm.1121.
Article
12. Toh S, Gagne JJ, Rassen JA, Fireman BH, Kulldorff M, Brown JS. Confounding adjustment in comparative effectiveness research conducted within distributed research networks. Med Care. 2013; 51(8 Suppl 3):S4–10.
https://doi.org/10.1097/MLR.0b013e31829b1bb1.
Article
13. Observational Health Data Sciences and Informatics (OHDSI) [Internet]. [place unknown]: OHDSI;2022. [cited at 2023 Mar 20]. Available from:
https://www.ohdsi.org/.
14. FeederNet: a distributed clinical data analysis platform in Korea [Internet]. Seongnam, Korea: Evidnet;c2022. [cited at 2023 Mar 20]. Available from:
https://feedernet.com/member/main.
16. Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen R, Pratt N, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019; 394(10211):1816–26.
https://doi.org/10.1016/S0140-6736(19)32317-7.
Article