J Gynecol Oncol.  2022 Mar;33(2):e15. 10.3802/jgo.2022.33.e15.

Clinical evaluation of a droplet digital PCR assay for detecting POLE mutations and molecular classification of endometrial cancer

Affiliations
  • 1Department of Pathology, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
  • 2Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
  • 3Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea

Abstract


Objective
We evaluated droplet digital polymerase chain reaction (ddPCR) method for detecting POLE mutations in endometrial cancer (EC) and guiding its molecular classification.
Methods
We reviewed 240 EC specimens from our hospital database. A ddPCR assay was used to identify POLE mutations at 5 known hotspots (P286R, S297F, V411L, A456P, and S459F). Expressions of p53 and mismatch repair proteins were identified using immunohistochemistry.
Results
The ddPCR assay identified POLEmutations in 10.8% of patients. The most common mutation was V411L (61.54%), followed by P286R (23.07%), S459F (7.69%), S297F (3.85%), and A456P (3.85%). Eight/one cases had positive ddPCR but negative Sanger sequencing/next-generation sequencing, respectively. Molecular classification revealed p53-mutated subtype as significantly more common for tumors with a high International Federation of Gynecology and Obstetrics (FIGO) grade, deep myometrial invasion, lymphovascular space invasion, advanced stage, and high/advanced risk groups; the POLE mutated group was more frequent in the low stage and low/intermediate risk group. Survival analyses revealed the poorest outcomes for p53-mutated EC, while mismatch repair-deficient and no specific molecular profile ECs had similar progression-free survival (PFS) outcomes, and POLE -mutated ECs had the best PFS outcome (p<0.001). When only intermediate, high-intermediate, and high-risk groups were analyzed for subgroups, molecular classification still showed differences both in PFS (p=0.003) and overall survival (p=0.017).
Conclusion
Hotspot POLE mutations can be detected using the ddPCR assay. We suggest simultaneously evaluating POLE mutation status using ddPCR and p53/mismatch repair protein expressions using immunohistochemistry, which can rapidly and accurately determine the molecular subtype of EC.

Keyword

Polymerase Chain Reaction; POLE; Classification; Endometrial Cancer; Prognosis
Full Text Links
  • JGO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr