1. Huggett JF, Cowen S, Foy CA. 2015; Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 61:79–88. DOI:
10.1373/clinchem.2014.221366. PMID:
25338683.
2. Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. 2018; Digital polymerase chain reaction technology - recent advances and future perspectives. Lab Chip. 18:3717–32. DOI:
10.1039/C8LC00990B. PMID:
30402632.
3. Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, et al. 2017; Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron. 90:459–74. DOI:
10.1016/j.bios.2016.09.082. PMID:
27818047.
4. Taylor SC, Carbonneau J, Shelton DN, Boivin G. 2015; Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: clinical implications for quantification of oseltamivir-resistant subpopulations. J Virol Methods. 224:58–66. DOI:
10.1016/j.jviromet.2015.08.014. PMID:
26315318.
5. Jones M, Williams J, Gärtner K, Phillips R, Hurst J, Frater J. 2014; Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, 'definetherain'. J Virol Methods. 202:46–53. DOI:
10.1016/j.jviromet.2014.02.020. PMID:
24598230. PMCID:
PMC4003534.
6. Gerdes L, Iwobi A, Busch U, Pecoraro S. 2016; Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol Detect Quantif. 7:9–20. DOI:
10.1016/j.bdq.2015.12.003. PMID:
27077048. PMCID:
PMC4827695.
7. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. 2011; High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 83:8604–10. DOI:
10.1021/ac202028g. PMID:
22035192. PMCID:
PMC3216358.
9. Maier J, Lange T, Cross M, Wildenberger K, Niederwieser D, Franke GN. 2019; Optimized digital droplet PCR for BCR-ABL. J Mol Diagn. 21:27–37. DOI:
10.1016/j.jmoldx.2018.08.012. PMID:
30347270.
10. Xu X, Ma X, Zhang X, Cao G, Tang Y, Deng X, et al. 2019; Detection of BRAF V600E mutation in fine-needle aspiration fluid of papillary thyroid carcinoma by droplet digital PCR. Clin Chim Acta. 491:91–6. DOI:
10.1016/j.cca.2019.01.017. PMID:
30682328.
11. Lee ST, Kim SW, Ki CS, Jang JH, Shin JH, Oh YL, et al. 2012; Clinical implication of highly sensitive detection of the BRAF V600E mutation in fine-needle aspirations of thyroid nodules: a comparative analysis of three molecular assays in 4585 consecutive cases in a BRAF V600E mutation-prevalent area. J Clin Endocrinol Metab. 97:2299–306. DOI:
10.1210/jc.2011-3135. PMID:
22500044.
12. Park KS, Oh YL, Ki CS, Kim JW. 2015; Evaluation of the Real-Q BRAF V600E detection assay in fine-needle aspiration samples of thyroid nodules. J Mol Diagn. 17:431–7. DOI:
10.1016/j.jmoldx.2015.03.006. PMID:
25937618.
13. Choi R, Park KS, Kim JW, Ki CS. 2015; Evaluation of the Anyplex BRAF V600E real-time detection assay using dual-priming oligonucleotide technology in fine-needle aspirates of thyroid nodules. Ann Lab Med. 35:624–9. DOI:
10.3343/alm.2015.35.6.624. PMID:
26354351. PMCID:
PMC4579107.
14. CLSI. 2020. Evaluation of detection capability for clinical laboratory measurement procedures; approved guideline. 2nd ed. Clinical and Laboratory Standards Institute;Wayne, PA: CLSI EP17-A2.
15. CLSI. 2004. Evaluation of precision performance of quantitative measurement methods; approved guideline. 2nd ed. Clinical and Laboratory Standards Institute;Wayne, PA: CLSI EP5-A2.
16. Cibas ES, Ali SZ. 2017; The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 27:1341–6. DOI:
10.1089/thy.2017.0500. PMID:
29091573.
18. Krauss EA, Mahon M, Fede JM, Zhang L. 2016; Application of the Bethesda classification for thyroid fine-needle aspiration: institutional experience and meta-analysis. Arch Pathol Lab Med. 140:1121–31. DOI:
10.5858/arpa.2015-0154-SA. PMID:
27684984.
19. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. 2011; Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 96:3390–7. DOI:
10.1210/jc.2011-1469. PMID:
21880806. PMCID:
PMC3205883.
20. Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. 2018; Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 153:817–24. DOI:
10.1001/jamasurg.2018.1153. PMID:
29799911. PMCID:
PMC6583881.
21. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. 2019; Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol. 5:204–12. DOI:
10.1001/jamaoncol.2018.4616. PMID:
30419129. PMCID:
PMC6439562.
23. Nikiforov YE, Nikiforova MN. 2011; Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 7:569–80. DOI:
10.1038/nrendo.2011.142. PMID:
21878896.
25. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. 2013; The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 59:892–902. DOI:
10.1373/clinchem.2013.206375. PMID:
23570709.
26. Huggett JF. dMIQE Group. 2020; The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020. Clin Chem. 66:1012–29. DOI:
10.1093/clinchem/hvaa125. PMID:
32746458.
27. Fnais N, Soobiah C, Al-Qahtani K, Hamid JS, Perrier L, Straus SE, et al. 2015; Diagnostic value of fine needle aspiration BRAF(V600E) mutation analysis in papillary thyroid cancer: a systematic review and meta-analysis. Hum Pathol. 46:1443–54. DOI:
10.1016/j.humpath.2015.06.001. PMID:
26232865.
28. Li C, Lee KC, Schneider EB, Zeiger MA. 2012; BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 97:4559–70. DOI:
10.1210/jc.2012-2104. PMID:
23055546. PMCID:
PMC3513529.
29. Liu C, Chen T, Liu Z. 2016; Associations between BRAF(V600E) and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol. 14:241. DOI:
10.1186/s12957-016-0979-1. PMID:
27600854. PMCID:
PMC5012084.
30. Moon S, Song YS, Kim YA, Lim JA, Cho SW, Moon JH, et al. 2017; Effects of coexistent BRAFV600E and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid. 27:651–60. DOI:
10.1089/thy.2016.0350. PMID:
28181854.
31. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. 2015; Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 33:42–50. DOI:
10.1200/JCO.2014.56.8253. PMID:
25332244. PMCID:
PMC4268252.