Korean J Physiol Pharmacol.  2022 Nov;26(6):447-456. 10.4196/kjpp.2022.26.6.447.

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

Affiliations
  • 1The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
  • 2Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea

Abstract

The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptormediated extrinsic pathway.

Keyword

Apoptosis; Arctigenin; Caspase-dependent; Human pharyngeal carcinoma

Figure

  • Fig. 1 Chemical structure of Arctigenin.

  • Fig. 2 Effect of Arctigenin on cell viability in FaDu pharyngeal carcinoma cells. The effect of Arctigenin on the viability of L-929 cells (A) and FaDu cells (B) was accessed by the MTT assay. The percentage of cell viability was calculated as a ratio of A570nms of Arctigenin treated with cells and untreated control cells. Each data point represents the mean ± SEM of four experiments. MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. **p < 0.01 vs. control and ***p < 0.001 vs. control (the control cells measured in the absence of Arctigenin).

  • Fig. 3 Induction of cell death by Arctigenin. (A) L-929 cells and FaDu cell death by Arctigenin. The cells were treated with 0, 50, or 100 μM Arctigenin for 24 h. Arctigenin induced the death of FaDu cells in the dose-dependent manner. FaDu cells emitting green fluorescence are live cells stained by green calcein AM, whereas cells emitting red fluorescence are dead cells stained by ethidium homodimer-1. The arrows indicate dead cells stained red. Scale bar represents 100 µm. (B) Quantitative data of (A) were counted, and calculated as 100%. Each data point represents the mean ± SEM of four experiments. **p < 0.01 vs. control and ***p < 0.001 vs. control (the control cells measured in the absence of Arctigenin).

  • Fig. 4 Apoptotic phenomenon in FaDu pharyngeal carcinoma cells stimulated with Arctigenin. (A) Changes in nuclear morphology by Arctigenin. The cells were treated with 0, 50, 100 μM Arctigenin for 24 h. DAPI staining revealed that the number of FaDu cells with nuclear condensation was increased by Arctigenin. The arrows indicated the apoptotic cells with chromatic condensation characteristics. Scale bar represents 100 µm. (B) TUNEL assay revealed that the number of FaDu cells with apoptotic nuclei are stained dark brown was increased by Arctigenin. The arrows indicate apoptotic nuclei stained dark brown. Scale bar represents 100 µm. (C) Arctigenin induces the caspase-3/-7 activation in FaDu cells. The caspase-3/-7 intracellular activity assay was performed using PhiPhiLux-caspase-3/-7 substrate. Images were observed by fluorescence microscopy (Eclipse TE 2000; Nikon Instruments, Melville, NY, USA). Scale bar represents 100 µm.

  • Fig. 5 Arctigenin-induced FaDu pharyngeal carcinoma cell death is meditated by both intrinsic and extrinsic pathways. (A) Extrinsic death receptor-mediated apoptotic signaling pathway induced by Arctigenin. Arctigenin upregulated the expression level of the death receptor ligand Fas and subsequently activated the extrinsic death receptor-mediated apoptotic signaling pathway through the cleavage of caspase-8 in FaDu cells. (B) Intrinsic mitochondria-dependent apoptotic signaling pathway induced by Arctigenin. Arctigenin downregulated anti-apoptotic factors Bcl-2 and Bcl-xL associated with the intrinsic mitochondria-dependent apoptotic pathway and upregulated the mitochondria-dependent pro-apoptotic factors Bax and Bad in FaDu cells. (C) Extrinsic death receptor-mediated and intrinsic mitochondria-dependent apoptosis signaling pathways via the activation of caspase-3 and PARP induced by Arctigenin. Cleaved caspase-8 and cleaved caspase-9 induced the activation of caspase-3 and PARP in FaDu cells treated with Arctigenin.

  • Fig. 6 Arctigenin-induced apoptosis in FaDu cells was mediated by caspase. (A) Z-VAD-fmk, a pan-caspase inhibitor, reversed Arctigenin induced cell death in FaDu cells. (B) Activation of caspase-3 and PARP in FaDu cells treated with Arctigenin was inhibited in the presence of Z-VAD-fmk. Each data point represents the mean ± SEM of four experiments (**p < 0.01).

  • Fig. 7 Arctigenin reduced the phosphorylation of proteins in the MAPKs, NF-κB, and AKT pathways in FaDu pharyngeal cells. FaDu cells were treated with 0, 50, and 100 μM Arctigenin for 24 h. Thereafter, immunoblotting using specific antibodies against extracellular signal-regulated kinase 1/2 (ERK1/2), p38, NFκB, and AKT was performed to verify potential cellular signaling pathways associated with Arctigenin-induced apoptosis.


Reference

1. Warnakulasuriya S. 2009; Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45:309–316. DOI: 10.1016/j.oraloncology.2008.06.002. PMID: 18804401. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=67349186933&origin=inward.
Article
2. Kalavrezos N, Scully C. 2015; Mouth cancer for clinicians. Part 2: epidemiology. Dent Update. 42:354–356. 358–359. DOI: 10.12968/denu.2015.42.4.354. PMID: 26062260.
Article
3. Sun F, Li D, Wang C, Peng C, Zheng H, Wang X. 2019; Acacetin-induced cell apoptosis in head and neck squamous cell carcinoma cells: evidence for the role of muscarinic M3 receptor. Phytother Res. 33:1551–1561. DOI: 10.1002/ptr.6343. PMID: 31066474. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065512110&origin=inward.
Article
4. Rettig EM, D'Souza G. 2015; Epidemiology of head and neck cancer. Surg Oncol Clin N Am. 24:379–396. DOI: 10.1016/j.soc.2015.03.001. PMID: 25979389. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929504129&origin=inward.
Article
5. Pezzuto F, Buonaguro L, Caponigro F, Ionna F, Starita N, Annunziata C, Buonaguro FM, Tornesello ML. 2015; Update on head and neck cancer: current knowledge on epidemiology, risk factors, molecular features and novel therapies. Oncology. 89:125–136. DOI: 10.1159/000381717. PMID: 25967534. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84942190711&origin=inward.
Article
6. Kundu SK, Nestor M. 2012; Targeted therapy in head and neck cancer. Tumour Biol. 33:707–721. DOI: 10.1007/s13277-012-0350-2. PMID: 22373581. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84863587948&origin=inward.
Article
7. Sacks PG. 1996; Cell, tissue and organ culture as in vitro models to study the biology of squamous cell carcinomas of the head and neck. Cancer Metastasis Rev. 15:27–51. DOI: 10.1007/BF00049486. PMID: 8842478. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0029929233&origin=inward.
Article
8. Todd R, Donoff RB, Wong DT. 1997; The molecular biology of oral carcinogenesis: toward a tumor progression model. J Oral Maxillofac Surg. 55:613–623. discussion 623–625. DOI: 10.1016/S0278-2391(97)90495-X. PMID: 9191644. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0030926441&origin=inward.
Article
9. Links M, Lewis C. 1999; Chemoprotectants: a review of their clinical pharmacology and therapeutic efficacy. Drugs. 57:293–308. DOI: 10.2165/00003495-199957030-00003. PMID: 10193684. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033014520&origin=inward.
10. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. 2015; Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 16:2129–2144. DOI: 10.7314/APJCP.2015.16.6.2129. PMID: 25824729. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929224850&origin=inward.
Article
11. Rahman MA, Hannan MA, Dash R, Rahman MH, Islam R, Uddin MJ, Sohag AAM, Rahman MH, Rhim H. 2021; Phytochemicals as a complement to cancer chemotherapy: pharmacological modulation of the autophagy-apoptosis pathway. Front Pharmacol. 12:639628. DOI: 10.3389/fphar.2021.639628. PMID: 34025409. PMCID: PMC8138161. PMID: 8e76401c7d1f4cf1b752c609c09dc5db. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106167533&origin=inward.
Article
12. Sak K. 2012; Chemotherapy and dietary phytochemical agents. Chemother Res Pract. 2012:282570. DOI: 10.1155/2012/282570. PMID: 23320169. PMCID: PMC3539428.
Article
13. Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. 2015; Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 15:71. DOI: 10.1186/s12935-015-0221-1. PMID: 26180516. PMCID: PMC4502609. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84937028711&origin=inward.
Article
14. Tompkins KD, Thorburn A. 2019; Regulation of apoptosis by autophagy to enhance cancer therapy. Yale J Biol Med. 92:707–718. PMID: 31866785. PMCID: PMC6913805. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077163064&origin=inward.
15. Wang X, Zhang H, Chen X. 2019; Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2:141–160. DOI: 10.20517/cdr.2019.10. PMID: 34322663. PMCID: PMC8315569. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103071967&origin=inward.
Article
16. Kaufmann SH, Earnshaw WC. 2000; Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 256:42–49. DOI: 10.1006/excr.2000.4838. PMID: 10739650. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034630167&origin=inward.
Article
17. Reed JC. 2001; Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med. 7:314–319. DOI: 10.1016/S1471-4914(01)02026-3. PMID: 11425640. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034953632&origin=inward.
Article
18. Punia R, Raina K, Agarwal R, Singh RP. 2017; Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One. 12:e0182870. DOI: 10.1371/journal.pone.0182870. PMID: 28859099. PMCID: PMC5578506. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85029188611&origin=inward.
Article
19. Gao Q, Yang M, Zuo Z. 2018; Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin. 39:787–801. DOI: 10.1038/aps.2018.32. PMID: 29698388. PMCID: PMC5943914. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046671767&origin=inward.
Article
20. Yang Z, Liu N, Huang B, Wang Y, Hu Y, Zhu Y. 2005; Effect of anti-influenza virus of Arctigenin in vivo. Zhong Yao Cai. 28:1012–1014. Chinese. PMID: 16514891. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33748874508&origin=inward.
21. Tsai WJ, Chang CT, Wang GJ, Lee TH, Chang SF, Lu SC, Kuo YC. 2011; Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes. Chin Med. 6:12. DOI: 10.1186/1749-8546-6-12. PMID: 21435270. PMCID: PMC3076299. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79953092808&origin=inward.
Article
22. Yao X, Li G, Lü C, Xu H, Yin Z. 2012; Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity. Int Immunopharmacol. 14:138–144. DOI: 10.1016/j.intimp.2012.06.017. PMID: 22770942. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864075049&origin=inward.
Article
23. Lee JY, Kim CJ. 2010; Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes. Arch Pharm Res. 33:947–957. DOI: 10.1007/s12272-010-0619-1. PMID: 20607501. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954485451&origin=inward.
Article
24. Kang HS, Lee JY, Kim CJ. 2008; Anti-inflammatory activity of arctigenin from Forsythiae Fructus. J Ethnopharmacol. 116:305–312. DOI: 10.1016/j.jep.2007.11.030. PMID: 18180122. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=39149122828&origin=inward.
Article
25. Lu Z, Cao S, Zhou H, Hua L, Zhang S, Cao J. 2015; Mechanism of arctigenin-induced specific cytotoxicity against human hepatocellular carcinoma cell lines: Hep G2 and SMMC7721. PLoS One. 10:e0125727. DOI: 10.1371/journal.pone.0125727. PMID: 25933104. PMCID: PMC4416797. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928776796&origin=inward.
Article
26. He Y, Fan Q, Cai T, Huang W, Xie X, Wen Y, Shi Z. 2018; Molecular mechanisms of the action of arctigenin in cancer. Biomed Pharmacother. 108:403–407. DOI: 10.1016/j.biopha.2018.08.158. PMID: 30236849. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85053399921&origin=inward.
Article
27. Wang HQ, Jin JJ, Wang J. 2014; Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression. J Biochem Mol Toxicol. 28:39–45. DOI: 10.1002/jbt.21533. PMID: 24395429. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84891632136&origin=inward.
Article
28. Maxwell T, Chun SY, Lee KS, Kim S, Nam KS. 2017; The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int J Oncol. 50:727–735. DOI: 10.3892/ijo.2016.3825. PMID: 28035371. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013040741&origin=inward.
Article
29. Kim JS, Cho IA, Kang KR, Lim H, Kim TH, Yu SK, Kim HJ, Lee SA, Moon SM, Chun HS, Kim CS, Kim DK. 2019; Reversine induces caspase-dependent apoptosis of human osteosarcoma cells through extrinsic and intrinsic apoptotic signaling pathways. Genes Genomics. 41:657–665. DOI: 10.1007/s13258-019-00790-1. PMID: 30953339. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85064266609&origin=inward.
Article
30. Park MG, Kim JS, Park SY, Lee SA, Kim HJ, Kim CS, Kim JS, Chun HS, Park JC, Kim DK. 2014; MicroRNA-27 promotes the differentiation of odontoblastic cell by targeting APC and activating Wnt/β-catenin signaling. Gene. 538:266–272. DOI: 10.1016/j.gene.2014.01.045. PMID: 24487055. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84893935584&origin=inward.
Article
31. Hadden JW. 1997; The immunopharmacology of head and neck cancer: an update. Int J Immunopharmacol. 19:629–644. DOI: 10.1016/S0192-0561(97)00063-5. PMID: 9669203. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0344447055&origin=inward.
Article
32. Hensley P, Mishra M, Kyprianou N. 2013; Targeting caspases in cancer therapeutics. Biol Chem. 394:831–843. DOI: 10.1515/hsz-2013-0128. PMID: 23509217. PMCID: PMC3721733. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84881177777&origin=inward.
Article
33. Ray RS, Agrawal N, Sharma A, Hans RK. 2008; Use of L-929 cell line for phototoxicity assessment. Toxicol In Vitro. 22:1775–1781. DOI: 10.1016/j.tiv.2008.06.015. PMID: 18657604. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=51749101270&origin=inward.
Article
34. Jiang Y, Liu J, Hong W, Fei X, Liu R. 2020; Arctigenin inhibits glioblastoma proliferation through the AKT/mTOR pathway and induces autophagy. Biomed Res Int. 2020:3542613. DOI: 10.1155/2020/3542613. PMID: 33015162. PMCID: PMC7512051. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092488454&origin=inward.
Article
35. Yang S, Ma J, Xiao J, Lv X, Li X, Yang H, Liu Y, Feng S, Zhang Y. 2012; Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis. Anat Rec (Hoboken). 295:1260–1266. DOI: 10.1002/ar.22497. PMID: 22619087. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84863549883&origin=inward.
36. Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC. 2007; Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res. 313:3635–3644. DOI: 10.1016/j.yexcr.2007.06.018. PMID: 17643424. PMCID: PMC2705844. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34548696434&origin=inward.
Article
37. Creagh EM, Conroy H, Martin SJ. 2003; Caspase-activation pathways in apoptosis and immunity. Immunol Rev. 193:10–21. DOI: 10.1034/j.1600-065X.2003.00048.x. PMID: 12752666. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0037833742&origin=inward.
Article
38. Herrnring C, Reimer T, Jeschke U, Makovitzky J, Krüger K, Gerber B, Kabelitz D, Friese K. 2000; Expression of the apoptosis-inducing ligands FasL and TRAIL in malignant and benign human breast tumors. Histochem Cell Biol. 113:189–194. DOI: 10.1007/s004180050438. PMID: 10817673. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034036052&origin=inward.
Article
39. Kluck RM, Martin SJ, Hoffman BM, Zhou JS, Green DR, Newmeyer DD. 1997; Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16:4639–4649. DOI: 10.1093/emboj/16.15.4639. PMID: 9303308. PMCID: PMC1170090. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0030741528&origin=inward.
Article
40. Kroemer G, Reed JC. 2000; Mitochondrial control of cell death. Nat Med. 6:513–519. DOI: 10.1038/74994. PMID: 10802706. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034068601&origin=inward.
Article
41. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. 2001; Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 292:727–730. DOI: 10.1126/science.1059108. PMID: 11326099. PMCID: PMC3049805. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0035957653&origin=inward.
Article
42. Han YH, Kee JY, Kim DS, Mun JG, Jeong MY, Park SH, Choi BM, Park SJ, Kim HJ, Um JY, Hong SH. 2016; Arctigenin inhibits lung metastasis of colorectal cancer by regulating cell viability and metastatic phenotypes. Molecules. 21:1135. DOI: 10.3390/molecules21091135. PMID: 27618887. PMCID: PMC6272973. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84987858588&origin=inward.
Article
43. Yue J, López JM. 2020; Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 21:2346. DOI: 10.3390/ijms21072346. PMID: 32231094. PMCID: PMC7177758. PMID: ea6f3fdf31194ddd9c6b405921186f76. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082791079&origin=inward.
Article
44. Royuela M, Arenas MI, Bethencourt FR, Sánchez-Chapado M, Fraile B, Paniagua R. 2002; Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Hum Pathol. 33:299–306. DOI: 10.1053/hupa.2002.32227. PMID: 11979370. PMID: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0036235788&origin=inward.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr