2. Kakoty V, K C S, Tang RD, Yang CH, Dubey SK, Taliyan R. 2020; Fibroblast growth factor 21 and autophagy: a complex interplay in Parkinson disease. Biomed Pharmacother. 127:110145. DOI:
10.1016/j.biopha.2020.110145. PMID:
32361164.
Article
4. Shi Y, Wang S, Peng H, Lv Y, Li W, Cheng S, Liu J. 2019; Fibroblast growth factor 21 attenuates vascular calcification by alleviating endoplasmic reticulum stress mediated apoptosis in rats. Int J Biol Sci. 15:138–147. DOI:
10.7150/ijbs.28873. PMID:
30662354. PMCID:
PMC6329919.
Article
5. Huang WP, Chen CY, Lin TW, Kuo CS, Huang HL, Huang PH, Lin SJ. 2022; Fibroblast growth factor 21 reverses high-fat diet-induced impairment of vascular function via the anti-oxidative pathway in ApoE knockout mice. J Cell Mol Med. 26:2451–2461. DOI:
10.1111/jcmm.17273. PMID:
35307922. PMCID:
PMC8995458.
Article
6. Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, Tian H, Wang B, Wang Y, Zhang Y, Han Z, Qu A, Xu H, Lu A, Yang T, Li X, Xu A, Du J, Lin Z. 2018; FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1-7) axis in mice. Cell Metab. 27:1323–1337.e5. DOI:
10.1016/j.cmet.2018.04.002. PMID:
29706566.
Article
7. Xie T, Yin L, Guo D, Zhang Z, Chen Y, Liu B, Wang W, Zheng Y. 2021; The potential role of plasma fibroblast growth factor 21 as a diagnostic biomarker for abdominal aortic aneurysm presence and development. Life Sci. 274:119346. DOI:
10.1016/j.lfs.2021.119346. PMID:
33713667.
Article
8. Ebert SM, Rasmussen BB, Judge AR, Judge SM, Larsson L, Wek RC, Anthony TG, Marcotte GR, Miller MJ, Yorek MA, Vella A, Volpi E, Stern JI, Strub MD, Ryan Z, Talley JJ, Adams CM. 2022; Biology of activating transcription factor 4 (ATF4) and its role in skeletal muscle atrophy. J Nutr. 152:926–938. DOI:
10.1093/jn/nxab440. PMID:
34958390. PMCID:
PMC8970988.
Article
9. Kim KH, Jeong YT, Kim SH, Jung HS, Park KS, Lee HY, Lee MS. 2013; Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem Biophys Res Commun. 440:76–81. DOI:
10.1016/j.bbrc.2013.09.026. PMID:
24041694.
Article
10. Maruyama R, Shimizu M, Li J, Inoue J, Sato R. 2016; Fibroblast growth factor 21 induction by activating transcription factor 4 is regulated through three amino acid response elements in its promoter region. Biosci Biotechnol Biochem. 80:929–934. DOI:
10.1080/09168451.2015.1135045. PMID:
27010621.
Article
11. Ni XQ, Lu WW, Zhang JS, Zhu Q, Ren JL, Yu YR, Liu XY, Wang XJ, Han M, Jing Q, Du J, Tang CS, Qi YF. 2018; Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice. Endocrine. 62:90–106. DOI:
10.1007/s12020-018-1657-6. PMID:
29943223.
Article
12. Zhou Z, Zhou H, Zou X, Wang X. 2022; RUNX3 is up-regulated in abdominal aortic aneurysm and regulates the function of vascular smooth muscle cells by regulating TGF-β1. J Mol Histol. 53:1–11. DOI:
10.1007/s10735-021-10035-9. PMID:
34813022.
Article
13. Liu X, Chen X, Xu C, Lou J, Weng Y, Tang L. 2022; Platelet protects angiotensin II-driven abdominal aortic aneurysm formation through inhibition of inflammation. Exp Gerontol. 159:111703. DOI:
10.1016/j.exger.2022.111703. PMID:
35038567.
Article
14. Gao P, Zhang H, Zhang Q, Fang X, Wu H, Wang M, Lu Z, Wei X, Yang G, Yan Z, Liu D, Zhu Z. 2019; Caloric restriction exacerbates angiotensin II-induced abdominal aortic aneurysm in the absence of p53. Hypertension. 73:547–560. DOI:
10.1161/HYPERTENSIONAHA.118.12086. PMID:
30686087.
Article
15. Ma M, Yang X, Han F, Wang H. 2022; Circ_0092291 attenuates angiotensin II-induced cell damages in human aortic vascular smooth muscle cells via mediating the miR-626/COL4A1 signal axis. J Physiol Biochem. 78:245–256. DOI:
10.1007/s13105-021-00859-0. PMID:
34997455.
Article
16. Chiang MT, Chen IM, Hsu FF, Chen YH, Tsai MS, Hsu YW, Leu HB, Huang PH, Chen JW, Liu FT, Chen YH, Chau LY. 2021; Gal-1 (galectin-1) upregulation contributes to abdominal aortic aneurysm progression by enhancing vascular inflammation. Arterioscler Thromb Vasc Biol. 41:331–345. DOI:
10.1161/ATVBAHA.120.315398. PMID:
33147994.
Article
17. Horimatsu T, Blomkalns AL, Ogbi M, Moses M, Kim D, Patel S, Gilreath N, Reid L, Benson TW, Pye J, Ahmadieh S, Thompson A, Robbins N, Mann A, Edgell A, Benjamin S, Stansfield BK, Huo Y, Fulton DJ, Agarwal G, et al. 2020; Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: role of NAD+/nicotinamide. Cardiovasc Res. 116:2226–2238. DOI:
10.1093/cvr/cvz303. PMID:
31710686. PMCID:
PMC7695356.
Article
18. Doyle BJ, Bappoo N, Syed MBJ, Forsythe RO, Powell JT, Conlisk N, Hoskins PR, McBride OMB, Shah ASV, Norman PE, Newby DE. 2020; Biomechanical assessment predicts aneurysm related events in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 60:365–373. DOI:
10.1016/j.ejvs.2020.02.023. PMID:
32253165.
Article
19. Bernal S, Lopez-Sanz L, Jimenez-Castilla L, Prieto I, Melgar A, La Manna S, Martin-Ventura JL, Blanco-Colio LM, Egido J, Gomez-Guerrero C. 2021; Protective effect of suppressor of cytokine signalling 1-based therapy in experimental abdominal aortic aneurysm. Br J Pharmacol. 178:564–581. DOI:
10.1111/bph.15330. PMID:
33227156.
Article
20. Memon AA, Zarrouk M, Ågren-Witteschus S, Sundquist J, Gottsäter A, Sundquist K. 2020; Identification of novel diagnostic and prognostic biomarkers for abdominal aortic aneurysm. Eur J Prev Cardiol. 27:132–142. DOI:
10.1177/2047487319873062. PMID:
31466471.
Article
21. Riches-Suman K, Hussain A. 2022; Identifying and targeting the molecular signature of smooth muscle cells undergoing early vascular ageing. Biochim Biophys Acta Mol Basis Dis. 1868:166403. DOI:
10.1016/j.bbadis.2022.166403. PMID:
35367337.
Article
22. Hsu CY, Vo TTT, Lee CW, Chen YL, Lin WN, Cheng HC, Vo QC, Lee IT. 2022; Carbon monoxide releasing molecule-2 attenuates angiotensin II-induced IL-6/Jak2/Stat3-associated inflammation by inhibiting NADPH oxidase- and mitochondria-derived ROS in human aortic smooth muscle cells. Biochem Pharmacol. 198:114978. DOI:
10.1016/j.bcp.2022.114978. PMID:
35218740.
Article
23. Jiang B, Wang M, Li X, Ren P, Li G, Wang Y, Wang L, Li X, Yang D, Qin L, Xin S. 2022; Hexarelin attenuates abdominal aortic aneurysm formation by inhibiting SMC phenotype switch and inflammasome activation. Microvasc Res. 140:104280. DOI:
10.1016/j.mvr.2021.104280. PMID:
34856183.
Article
24. Yao D, He Q, Sun J, Cai L, Wei J, Cai G, Liu J, Lin Y, Wang L, Huang X. 2021; FGF21 attenuates hypoxia-induced dysfunction and inflammation in HPAECs via the microRNA-27b-mediated PPARγ pathway. Int J Mol Med. 47:116. DOI:
10.3892/ijmm.2021.4949. PMID:
33907846. PMCID:
PMC8083827.
Article
25. Zeng Z, Zheng Q, Chen J, Tan X, Li Q, Ding L, Zhang R, Lin X. 2020; FGF21 mitigates atherosclerosis via inhibition of NLRP3 inflammasome-mediated vascular endothelial cells pyroptosis. Exp Cell Res. 393:112108. DOI:
10.1016/j.yexcr.2020.112108. PMID:
32445748.
Article
26. Yuan S, Liang X, He W, Liang M, Jin J, He Q. 2021; ATF4-dependent heme-oxygenase-1 attenuates diabetic nephropathy by inducing autophagy and inhibiting apoptosis in podocyte. Ren Fail. 43:968–979. DOI:
10.1080/0886022X.2021.1936040. PMID:
34157937. PMCID:
PMC8231401.
Article
27. Feng L, Li M, Hu X, Li Y, Zhu L, Chen M, Wei Q, Xu W, Zhou Q, Wang W, Chen D, Wang X, Jin H. 2021; CK1δ stimulates ubiquitination-dependent proteasomal degradation of ATF4 to promote chemoresistance in gastric Cancer. Clin Transl Med. 11:e587. DOI:
10.1002/ctm2.587. PMID:
34709767. PMCID:
PMC8516343. PMID:
0e859d4b9c61470e9f235edfc56ecf03.
Article
28. Malabanan KP, Khachigian LM. 2010; Activation transcription factor-4 and the acute vascular response to injury. J Mol Med (Berl). 88:545–552. DOI:
10.1007/s00109-010-0615-4. PMID:
20306012.
Article