J Korean Diabetes.  2022 Jun;23(2):89-96. 10.4093/jkd.2022.23.2.89.

Appetite Control Mechanisms and Obesity

Affiliations
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea

Abstract

Dysregulated energy homeostasis leads to obesity. The brain, particularly hypothalamus and brain stem, plays a key role in the control of food intake and homeostatic regulation of energy metabolism. Food reward-related hedonic controls integrate with homeostatic controls to regulate body weight. The brain determines energy status by receiving peripheral signals, such as nutrients, gut-derived satiety signals, and adiposity-related hormones, via the circulation or through afferent fibers of the vagus nerve. Significant advances in understanding of the molecular mechanisms of appetite control and energy metabolism drove the pursuit of anti-obesity drugs in recent years. The development of incretins as drugs for type 2 diabetes provided unprecedented results in body weight loss. Recently, clinical study results with incretin-based poly-agonists reported mean weight loss greater than 10%, inspiring confidence in development of anti-obesity medications. Here, I briefly review how brain and peripheral signals integrate and interact to regulate homeostatic and hedonic eating behavior and discuss the mechanism of action of recently developed anti-obesity drugs.

Keyword

Appetite; Energy metabolism; Hypothalamus; Incretins; Obesity

Reference

1.Afshin A., Forouzanfar MH., Reitsma MB., Sur P., Estep K., Lee A. GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017. 377:13–27.
Article
2.Nam GE., Kim YH., Han K., Jung JH., Rhee EJ., Lee WY. Obesity fact sheet in Korea, 2020: prevalence of obesity by obesity class from 2009 to 2018. J Obes Metab Syndr. 2021. 30:141–8.
Article
3.Bjerregaard LG., Jensen BW., Ängquist L., Osler M., S⊘rensen TIA., Baker JL. Change in overweight from childhood to early adulthood and risk of type 2 diabetes. N Engl J Med. 2018. 378:1302–12.
Article
4.Twig G., Yaniv G., Levine H., Leiba A., Goldberger N., Der-azne E. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016. 374:2430–40.
Article
5.Calle EE., Rodriguez C., Walker-Thurmond K., Thun MJ. Overweight, obesity, and mortality from cancer in a pro-spectively studied cohort of U.S. adults. N Engl J Med. 2003. 348:1625–38.
Article
6.Berrington de Gonzalez A., Hartge P., Cerhan JR., Flint AJ., Hannan L., MacInnis RJ. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010. 363:2211–9. Erratum in: N Engl J Med 2011;365: 869.
Article
7.Nakamura Y., Yanagawa Y., Morrison SF., Nakamura K. Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication. Cell Metab. 2017. 25:322–34.
Article
8.Berglund ED., Liu C., Sohn JW., Liu T., Kim MH., Lee CE. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest. 2013. 123:5061–70. Erratum in: J Clin Invest 2014; 124:1868.
Article
9.Sharretts J., Galescu O., Gomatam S., Andraca-Carrera E., Hampp C., Yanoff L. Cancer risk associated with lorcase-rin- the FDA's review of the CAMELLIA-TIMI 61 trial. N Engl J Med. 2020. 383:1000–2.
Article
10.Kim GW., Lin JE., Blomain ES., Waldman SA. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin Pharmacol Ther. 2014. 95:53–66.
Article
11.Wang GJ., Volkow ND., Logan J., Pappas NR., Wong CT., Zhu W. Brain dopamine and obesity. Lancet. 2001. 357:354–7.
Article
12.Wang GJ., Tomasi D., Volkow ND., Wang R., Telang F., Ca-parelli EC. Effect of combined naltrexone and bupropion therapy on the brain's reactivity to food cues. Int J Obes (Lond). 2014. 38:682–8.
Article
13.Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition. 2000. 16:866–73.
Article
14.Geerling JC., Shin JW., Chimenti PC., Loewy AD. Paraven-tricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol. 2010. 518:1460–99.
Article
15.Kim KS., Yoon YR., Lee HJ., Yoon S., Kim SY., Shin SW. Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J Biol Chem. 2010. 285:8905–17.
Article
16.Tartaglia LA., Dembski M., Weng X., Deng N., Culpepper J., Devos R. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995. 83:1263–71.
Article
17.Coppari R., Ichinose M., Lee CE., Pullen AE., Kenny CD., McGovern RA. The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab. 2005. 1:63–72.
Article
18.Ernst MB., Wunderlich CM., Hess S., Paehler M., Mesaros A., Koralov SB. Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. J Neurosci. 2009. 29:11582–93.
19.Mesaros A., Koralov SB., Rother E., Wunderlich FT., Ernst MB., Barsh GS. Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab. 2008. 7:236–48.
Article
20.Niswender KD., Morrison CD., Clegg DJ., Olson R., Baskin DG., Myers MG Jr. Insulin activation of phosphatidy-linositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 2003. 52:227–31.
21.Morrison CD., Morton GJ., Niswender KD., Gelling RW., Schwartz MW. Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phos-phatidylinositol 3-OH-kinase signaling. Am J Physiol Endocrinol Metab. 2005. 289:E1051–7.
22.Hommel JD., Trinko R., Sears RM., Georgescu D., Liu ZW., Gao XB. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006. 51:801–10.
Article
23.Myers MG Jr., Leibel RL., Seeley RJ., Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010. 21:643–51.
Article
24.Clément K., van den Akker E., Argente J., Bahm A., Chung WK., Connors H. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020. 8:960–70.
Article
25.Skibicka KP., Hansson C., Alvarez-Crespo M., Friberg PA., Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011. 180:129–37.
Article
26.Haqq AM., Grambow SC., Muehlbauer M., Newgard CB., Svetkey LP., Carrel AL. Ghrelin concentrations in Prader-Willi syndrome (PWS) infants and children: changes during development. Clin Endocrinol (Oxf). 2008. 69:911–20.
Article
27.Allas S., Caixàs A., Poitou C., Coupaye M., Thuilleaux D., Lorenzini F. AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prad-er-Willi syndrome: a randomized placebo-controlled trial. PLoS One. 2018. 13:e0190849.
Article
28.Moran TH., Baldessarini AR., Salorio CF., Lowery T., Schwartz GJ. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol. 1997. 272(4 Pt 2):R1245–51.
Article
29.Batterham RL., Cowley MA., Small CJ., Herzog H., Cohen MA., Dakin CL. Gut hormone PYY(3-36) physiolog-ically inhibits food intake. Nature. 2002. 418:650–4.
Article
30.Baggio LL., Drucker DJ. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest. 2014. 124:4223–6.
Article
31.Wang XF., Liu JJ., Xia J., Liu J., Mirabella V., Pang ZP. Endog-enous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep. 2015. 12:726–33.
Article
32.Marso SP., Daniels GH., Brown-Frandsen K., Kristensen P., Mann JF., Nauck MA. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016. 375:311–22.
Article
33.Pi-Sunyer X., Astrup A., Fujioka K., Greenway F., Halpern A., Krempf M. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015. 373:11–22.
Article
34.Wilding JPH., Batterham RL., Calanna S., Davies M., Van Gaal LF., Lingvay I. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021. 384:989.
Article
35.Zhang Q., Delessa CT., Augustin R., Bakhti M., Colldén G., Drucker DJ. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab. 2021. 33:833–44.e5.
Article
36.Day JW., Ottaway N., Patterson JT., Gelfanov V., Smiley D., Gidda J. A new glucagon and GLP-1 co-agonist elim-inates obesity in rodents. Nat Chem Biol. 2009. 5:749–57.
Article
37.Samms RJ., Coghlan MP., Sloop KW. How may GIP en-hance the therapeutic efficacy of GLP-1? Trends Endocrinol Metab. 2020. 31:410–21.
Article
38.Coskun T., Sloop KW., Loghin C., Alsina-Fernandez J., Urva S., Bokvist KB. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018. 18:3–14.
Article
39.Frías JP., Davies MJ., Rosenstock J., Pérez Manghi FC., Fernández Landó L., Bergman BK. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021. 385:503–15.
Article
40.Mullican SE., Lin-Schmidt X., Chin CN., Chavez JA., Fur-man JL., Armstrong AA. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017. 23:1150–7.
Article
Full Text Links
  • JKD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr