J Korean Assoc Oral Maxillofac Surg.  2022 Apr;48(2):71-78. 10.5125/jkaoms.2022.48.2.71.

Use of stem cells in bone regeneration in cleft palate patients: review and recommendations

Affiliations
  • 1Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
  • 2Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
  • 3Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

This study was conducted to review the efficacy of different sources of stem cells in bone regeneration of cleft palate patients. The majority of previous studies focused on the transplantation of bone marrow mesenchymal stem cells. However, other sources of stem cells have also gained considerable attention, and dental stem cells have shown especially favorable outcomes. Additionally, approaches that apply the co-culture and co-transplantation of stem cells have shown promising results. The use of different types of stem cells, based on their accessibility and efficacy in bone regeneration, is a promising method in cleft palate bone regeneration. In this regard, dental stem cells may be an ideal choice due to their efficacy and accessibility. In conclusion, stem cells, despite the lengthy procedures required for culture and preparation, are a suitable alternative to conventional bone grafting techniques.

Keyword

Cleft palate; Tissue engineering; Bone regeneration; Craniofacial abnormalities; Stem cells

Reference

References

1. Khazaei S, Shirani AM, Khazaei M, Najafi F. 2011; Incidence of cleft lip and palate in Iran. A meta-analysis. Saudi Med J. 32:390–3. PMID: 21483999.
2. Wu C, Pan W, Feng C, Su Z, Duan Z, Zheng Q, et al. 2018; Grafting materials for alveolar cleft reconstruction: a systematic review and best-evidence synthesis. Int J Oral Maxillofac Surg. 47:345–56. https://doi.org/10.1016/j.ijom.2017.08.003. DOI: 10.1016/j.ijom.2017.08.003. PMID: 28863859.
Article
3. Koole R, Bosker H, van der Dussen FN. 1989; Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J Craniomaxillofac Surg. 17 Suppl 1:28–30. https://doi.org/10.1016/s1010-5182(89)80036-8. DOI: 10.1016/S1010-5182(89)80036-8. PMID: 2606985.
Article
4. Kilinc A, Saruhan N, Ertas U, Korkmaz IH, Kaymaz I. 2017; An analysis of mandibular symphyseal graft sufficiency for alveolar cleft bone grafting. J Craniofac Surg. 28:147–50. https://doi.org/10.1097/SCS.0000000000003274. DOI: 10.1097/SCS.0000000000003274. PMID: 27941546.
Article
5. Weijs WL, Siebers TJ, Kuijpers-Jagtman AM, Bergé SJ, Meijer GJ, Borstlap WA. 2010; Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg. 39:424–9. https://doi.org/10.1016/j.ijom.2010.02.004. DOI: 10.1016/j.ijom.2010.02.004. PMID: 20303237.
Article
6. Mossaad A, Badry TE, Abdelrahaman M, Abdelazim A, Ghanem W, Hassan S, et al. 2019; Alveolar cleft reconstruction using different grafting techniques. Open Access Maced J Med Sci. 7:1369–73. https://doi.org/10.3889/oamjms.2019.236. DOI: 10.3889/oamjms.2019.236. PMID: 31110587. PMCID: PMC6514340.
Article
7. Paganelli C, Fontana P, Porta F, Majorana A, Pazzaglia UE, Sapelli PL. 2006; Indications on suitable scaffold as carrier of stem cells in the alveoloplasty of cleft palate. J Oral Rehabil. 33:625–9. https://doi.org/10.1111/j.1365-2842.2005.01594.x. DOI: 10.1111/j.1365-2842.2005.01594.x. PMID: 16856961.
Article
8. Mueller AA, Forraz N, Gueven S, Atzeni G, Degoul O, Pagnon-Minot A, et al. 2014; Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture. Plast Reconstr Surg. 134:59e–69e. https://doi.org/10.1097/PRS.0000000000000305. DOI: 10.1097/PRS.0000000000000305. PMID: 25028857.
Article
9. Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, et al. 2005; Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng. 11:663–73. https://doi.org/10.1089/ten.2005.11.663. DOI: 10.1089/ten.2005.11.663. PMID: 15998208.
Article
10. Baba K, Yamazaki Y, Ikemoto S, Aoyagi K, Takeda A, Uchinuma E. 2012; Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived autoserum. J Craniomaxillofac Surg. 40:768–72. https://doi.org/10.1016/j.jcms.2012.02.006. DOI: 10.1016/j.jcms.2012.02.006. PMID: 22503080.
Article
11. Sahai S, Wilkerson M, Xue H, Moreno N, Carrillo L, Flores R, et al. 2020; Wharton's jelly for augmented cleft palate repair in a rat critical-size alveolar bone defect model. Tissue Eng Part A. 26:591–601. https://doi.org/10.1089/ten.TEA.2019.0254. DOI: 10.1089/ten.tea.2019.0254. PMID: 31739755.
Article
12. Sun XC, Wang H, Li JH, Zhang D, Yin LQ, Yan YF, et al. 2020; Repair of alveolar cleft bone defects by bone collagen particles combined with human umbilical cord mesenchymal stem cells in rabbit. Biomed Eng Online. 19:62. https://doi.org/10.1186/s12938-020-00800-4. DOI: 10.1186/s12938-020-00800-4. PMID: 32746926. PMCID: PMC7397686.
Article
13. Caballero M, Morse JC, Halevi AE, Emodi O, Pharaon MR, Wood JS, et al. 2015; Juvenile swine surgical alveolar cleft model to test novel autologous stem cell therapies. Tissue Eng Part C Methods. 21:898–908. https://doi.org/10.1089/ten.TEC.2014.0646. DOI: 10.1089/ten.tec.2014.0646. PMID: 25837453. PMCID: PMC4553376.
Article
14. Caballero M, Jones DC, Shan Z, Soleimani S, van Aalst JA. 2017; Tissue engineering strategies to improve osteogenesis in the juvenile swine alveolar cleft model. Tissue Eng Part C Methods. 23:889–99. https://doi.org/10.1089/ten.TEC.2017.0148. DOI: 10.1089/ten.tec.2017.0148. PMID: 28747097. PMCID: PMC5734164.
Article
15. Garcia BA, Prada MR, Ávila-Portillo LM, Rojas HN, Gómez-Ortega V, Menze E. 2019; New technique for closure of alveolar cleft with umbilical cord stem cells. J Craniofac Surg. 30:663–6. https://doi.org/10.1097/SCS.0000000000004967. DOI: 10.1097/SCS.0000000000004967. PMID: 30507877.
Article
16. Mazzetti MPV, Alonso N, Brock RS, Ayoub A, Massumoto SM, Eça LP. 2018; Importance of stem cell transplantation in cleft lip and palate surgical treatment protocol. J Craniofac Surg. 29:1445–51. https://doi.org/10.1097/SCS.0000000000004766. DOI: 10.1097/SCS.0000000000004766. PMID: 30067525.
Article
17. Pourebrahim N, Hashemibeni B, Shahnaseri S, Torabinia N, Mousavi B, Adibi S, et al. 2013; A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs. Int J Oral Maxillofac Surg. 42:562–8. https://doi.org/10.1016/j.ijom.2012.10.012. DOI: 10.1016/j.ijom.2012.10.012. PMID: 23219713.
Article
18. Shahnaseri S, Sheikhi M, Hashemibeni B, Mousavi SA, Soltani P. 2020; Comparison of autogenous bone graft and tissue-engineered bone graft in alveolar cleft defects in canine animal models using digital radiography. Indian J Dent Res. 31:118–23. https://doi.org/10.4103/ijdr.IJDR_156_18. DOI: 10.4103/ijdr.IJDR_156_18. PMID: 32246693.
Article
19. Sasayama S, Hara T, Tanaka T, Honda Y, Baba S. 2018; Osteogenesis of multipotent progenitor cells using the epigallocatechin gallate-modified gelatin sponge scaffold in the rat congenital cleft-jaw model. Int J Mol Sci. 19:3803. https://doi.org/10.3390/ijms19123803. DOI: 10.3390/ijms19123803. PMID: 30501071. PMCID: PMC6320852.
Article
20. Lee SJ, Kim BJ, Kim YI, Sohn CH, Jeon YK, Xu L, et al. 2016; Effect of recombinant human bone morphogenetic protein-2 and adipose tissue-derived stem cell on new bone formation in high-speed distraction osteogenesis. Cleft Palate Craniofac J. 53:84–92. https://doi.org/10.1597/12-290. DOI: 10.1597/12-290. PMID: 23952562.
Article
21. Chen L, Lu X, Li S, Sun Q, Li W, Song D. 2012; Sustained delivery of BMP-2 and platelet-rich plasma-released growth factors contributes to osteogenesis of human adipose-derived stem cells. Orthopedics. 35:e1402–9. https://doi.org/10.3928/01477447-20120822-29. DOI: 10.3928/01477447-20120822-29. PMID: 22955409.
Article
22. Khojasteh A, Kheiri L, Behnia H, Tehranchi A, Nazeman P, Nadjmi N, et al. 2017; Lateral ramus cortical bone plate in alveolar cleft osteoplasty with concomitant use of buccal fat pad derived cells and autogenous bone: phase I clinical trial. Biomed Res Int. 2017:6560234. https://doi.org/10.1155/2017/6560234. DOI: 10.1155/2017/6560234. PMID: 29379800. PMCID: PMC5742895.
Article
23. Lei SH, Guo L, Yue HY, Zhao DC, Zhang CJ, Du WJ, et al. 2013; Marrow stromal stem cell autologous transplantation in denervated fracture healing: an experimental study in rats. Orthop Surg. 5:280–8. https://doi.org/10.1111/os.12071. DOI: 10.1111/os.12071. PMID: 24254452. PMCID: PMC6583111.
Article
24. Soltan M, Smiler D, Choi JH. 2009; Bone marrow: orchestrated cells, cytokines, and growth factors for bone regeneration. Implant Dent. 18:132–41. https://doi.org/10.1097/ID.0b013e3181990e75. DOI: 10.1097/ID.0b013e3181990e75. PMID: 19359864.
Article
25. Pavan Kumar B, Ram Mohan S, Mohan AP, Jeevan Kumar KA, Yashwanth Yadav B. 2016; Versatility of pleuripotent undifferentiated stem cells aspirated from bone marrow and its applications in oral and maxillofacial surgery. J Maxillofac Oral Surg. 15:1–11. https://doi.org/10.1007/s12663-015-0793-2. DOI: 10.1007/s12663-015-0793-2. PMID: 26929546. PMCID: PMC4759021.
Article
26. Al-Ahmady HH, Abd Elazeem AF, Bellah Ahmed NE, Shawkat WM, Elmasry M, Abdelrahman MA, et al. 2018; Combining autologous bone marrow mononuclear cells seeded on collagen sponge with nano hydroxyapatite, and platelet-rich fibrin: reporting a novel strategy for alveolar cleft bone regeneration. J Craniomaxillofac Surg. 46:1593–600. https://doi.org/10.1016/j.jcms.2018.05.049. DOI: 10.1016/j.jcms.2018.05.049. PMID: 30196860.
Article
27. Du F, Wu H, Li H, Cai L, Wang Q, Liu X, et al. 2017; Bone marrow mononuclear cells combined with beta-tricalcium phosphate granules for alveolar cleft repair: a 12-month clinical study. Sci Rep. 7:13773. https://doi.org/10.1038/s41598-017-12602-1. DOI: 10.1038/s41598-017-12602-1. PMID: 29062005. PMCID: PMC5653813.
Article
28. Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uludağ H, et al. 2011; Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A. 17:1313–25. https://doi.org/10.1089/ten.TEA.2010.0490. DOI: 10.1089/ten.tea.2010.0490. PMID: 21226625.
Article
29. Bajestan MN, Rajan A, Edwards SP, Aronovich S, Cevidanes LHS, Polymeri A, et al. 2017; Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: a randomized controlled, clinical trial. Clin Implant Dent Relat Res. 19:793–801. https://doi.org/10.1111/cid.12506. DOI: 10.1111/cid.12506. PMID: 28656723.
Article
30. Stanko P, Mracna J, Stebel A, Usakova V, Smrekova M, Vojtassak J. 2013; Mesenchymal stem cells - a promising perspective in the orofacial cleft surgery. Bratisl Lek Listy. 114:50–2. https://doi.org/10.4149/bll_2013_012. DOI: 10.4149/BLL_2013_012. PMID: 23331197.
Article
31. Korn P, Hauptstock M, Range U, Kunert-Keil C, Pradel W, Lauer G, et al. 2017; Application of tissue-engineered bone grafts for alveolar cleft osteoplasty in a rodent model. Clin Oral Investig. 21:2521–34. https://doi.org/10.1007/s00784-017-2050-1. DOI: 10.1007/s00784-017-2050-1. PMID: 28101680.
Article
32. Korn P, Schulz MC, Range U, Lauer G, Pradel W. 2014; Efficacy of tissue engineered bone grafts containing mesenchymal stromal cells for cleft alveolar osteoplasty in a rat model. J Craniomaxillofac Surg. 42:1277–85. https://doi.org/10.1016/j.jcms.2014.03.010. DOI: 10.1016/j.jcms.2014.03.010. PMID: 24831850.
Article
33. Bara JJ, McCarthy HE, Humphrey E, Johnson WE, Roberts S. 2014; Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: implications for bone and cartilage tissue engineering. Tissue Eng Part A. 20:147–59. https://doi.org/10.1089/ten.tea.2013.0196. DOI: 10.1089/ten.tea.2013.0196. PMID: 23895198.
Article
34. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Atashi A. 2012; Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report. J Craniomaxillofac Surg. 40:2–7. https://doi.org/10.1016/j.jcms.2011.02.003. DOI: 10.1016/j.jcms.2011.02.003. PMID: 21420310.
Article
35. Yoshioka M, Tanimoto K, Tanne Y, Sumi K, Awada T, Oki N, et al. 2012; Bone regeneration in artificial jaw cleft by use of carbonated hydroxyapatite particles and mesenchymal stem cells derived from iliac bone. Int J Dent. 2012:352510. https://doi.org/10.1155/2012/352510. DOI: 10.1155/2012/352510. PMID: 22536240. PMCID: PMC3320030.
Article
36. Tanimoto K, Sumi K, Yoshioka M, Oki N, Tanne Y, Awada T, et al. 2015; Experimental tooth movement into new bone area regenerated by use of bone marrow-derived mesenchymal stem cells. Cleft Palate Craniofac J. 52:386–94. https://doi.org/10.1597/12-232. DOI: 10.1597/12-232. PMID: 23782420.
Article
37. Naudot M, Davrou J, Djebara AE, Barre A, Lavagen N, Lardière S, et al. 2020; Functional validation of a new alginate-based hydrogel scaffold combined with mesenchymal stem cells in a rat hard palate cleft model. Plast Reconstr Surg Glob Open. 8:e2743. https://doi.org/10.1097/GOX.0000000000002743. DOI: 10.1097/GOX.0000000000002743. PMID: 32440413. PMCID: PMC7209877.
Article
38. Ahn G, Lee JS, Yun WS, Shim JH, Lee UL. 2018; Cleft alveolus reconstruction using a three-dimensional printed bioresorbable scaffold with human bone marrow cells. J Craniofac Surg. 29:1880–3. https://doi.org/10.1097/SCS.0000000000004747. DOI: 10.1097/SCS.0000000000004747. PMID: 30028404.
Article
39. Gimbel M, Ashley RK, Sisodia M, Gabbay JS, Wasson KL, Heller J, et al. 2007; Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J Craniofac Surg. 18:895–901. https://doi.org/10.1097/scs.0b013e3180a771af. DOI: 10.1097/scs.0b013e3180a771af. PMID: 17667684.
Article
40. Hibi H, Yamada Y, Ueda M, Endo Y. 2006; Alveolar cleft osteoplasty using tissue-engineered osteogenic material. Int J Oral Maxillofac Surg. 35:551–5. https://doi.org/10.1016/j.ijom.2005.12.007. DOI: 10.1016/j.ijom.2005.12.007. PMID: 16584868.
Article
41. Tavakolinejad S, Ebrahimzadeh Bidskan A, Ashraf H, Hamidi Alamdari D. 2014; A glance at methods for cleft palate repair. Iran Red Crescent Med J. 16:e15393. https://doi.org/10.5812/ircmj.15393. DOI: 10.5812/ircmj.15393. PMID: 25593724. PMCID: PMC4270645.
Article
42. Zhao YH, Zhang M, Liu NX, Lv X, Zhang J, Chen FM, et al. 2013; The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation. Biomaterials. 34:5506–20. https://doi.org/10.1016/j.biomaterials.2013.03.079. DOI: 10.1016/j.biomaterials.2013.03.079. PMID: 23639531.
Article
43. Martín-Del-Campo M, Rosales-Ibañez R, Rojo L. 2019; Biomaterials for cleft lip and palate regeneration. Int J Mol Sci. 20:2176. https://doi.org/10.3390/ijms20092176. DOI: 10.3390/ijms20092176. PMID: 31052503. PMCID: PMC6540257.
Article
44. Huang J, Tian B, Chu F, Yang C, Zhao J, Jiang X, et al. 2015; Rapid maxillary expansion in alveolar cleft repaired with a tissue-engineered bone in a canine model. J Mech Behav Biomed Mater. 48:86–99. https://doi.org/10.1016/j.jmbbm.2015.03.029. DOI: 10.1016/j.jmbbm.2015.03.029. PMID: 25913611.
Article
45. Isono H, Kaida K, Hamada Y, Kokubo Y, Ishihara M, Hirashita A, et al. 2002; The reconstruction of bilateral clefts using endosseous implants after bone grafting. Am J Orthod Dentofacial Orthop. 121:403–10. https://doi.org/10.1067/mod.2002.121364. DOI: 10.1067/mod.2002.121364. PMID: 11997765.
Article
46. Chung VH, Chen AY, Jeng LB, Kwan CC, Cheng SH, Chang SC. 2012; Engineered autologous bone marrow mesenchymal stem cells: alternative to cleft alveolar bone graft surgery. J Craniofac Surg. 23:1558–63. https://doi.org/10.1097/SCS.0b013e31825e4e30. DOI: 10.1097/SCS.0b013e31825e4e30. PMID: 22976660.
Article
47. Lee JM, Kim HY, Park JS, Lee DJ, Zhang S, Green DW, et al. 2019; Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med. 13:319–27. https://doi.org/10.1002/term.2811. DOI: 10.1002/term.2811. PMID: 30644640.
Article
48. Du Y, Jiang F, Liang Y, Wang Y, Zhou W, Pan Y, et al. 2016; The angiogenic variation of skeletal site-specific human BMSCs from same alveolar cleft patients: a comparative study. J Mol Histol. 47:153–68. https://doi.org/10.1007/s10735-016-9662-7. DOI: 10.1007/s10735-016-9662-7. PMID: 26846721.
Article
49. Dong W, Zhang P, Fu Y, Ge J, Cheng J, Yuan H, et al. 2015; Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. J Cell Physiol. 230:680–90. https://doi.org/10.1002/jcp.24792. DOI: 10.1002/jcp.24792. PMID: 25200657.
Article
50. Nakajima K, Kunimatsu R, Ando K, Ando T, Hayashi Y, Kihara T, et al. 2018; Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 497:876–82. https://doi.org/10.1016/j.bbrc.2018.02.156. DOI: 10.1016/j.bbrc.2018.02.156. PMID: 29477844.
Article
51. Tanikawa DYS, Pinheiro CCG, Almeida MCA, Oliveira CRGCM, Coudry RA, Rocha DL, et al. 2020; Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int. 2020:6234167. https://doi.org/10.1155/2020/6234167. DOI: 10.1155/2020/6234167. PMID: 32256610. PMCID: PMC7091546.
Article
52. Jahanbin A, Rashed R, Alamdari DH, Koohestanian N, Ezzati A, Kazemian M, et al. 2016; Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. J Oral Maxillofac Surg. 74:829.e1–9. https://doi.org/10.1016/j.joms.2015.11.033. DOI: 10.1016/j.joms.2015.11.033. PMID: 26763080.
Article
53. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. 2017; Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. J Mater Sci Mater Med. 28:25. https://doi.org/10.1007/s10856-016-5833-z. DOI: 10.1007/s10856-016-5833-z. PMID: 28070691.
Article
54. Berger M, Probst F, Schwartz C, Cornelsen M, Seitz H, Ehrenfeld M, et al. 2015; A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty. J Craniomaxillofac Surg. 43:830–6. https://doi.org/10.1016/j.jcms.2015.04.023. DOI: 10.1016/j.jcms.2015.04.023. PMID: 26027868.
Article
55. Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA. 2017; Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl. 32:598–611. https://doi.org/10.1177/0885328217734824. DOI: 10.1177/0885328217734824. PMID: 28980856.
Article
56. Martín-Piedra MA, Alaminos M, Fernández-Valadés-Gámez R, España-López A, Liceras-Liceras E, Sánchez-Montesinos I, et al. 2017; Development of a multilayered palate substitute in rabbits: a histochemical ex vivo and in vivo analysis. Histochem Cell Biol. 147:377–88. https://doi.org/10.1007/s00418-016-1489-5. DOI: 10.1007/s00418-016-1489-5. PMID: 27600719.
Article
57. Pinheiro CCG, de Pinho MC, Aranha AC, Fregnani E, Bueno DF. 2018; Low power laser therapy: a strategy to promote the osteogenic differentiation of deciduous dental pulp stem cells from cleft lip and palate patients. Tissue Eng Part A. 24:569–75. https://doi.org/10.1089/ten.TEA.2017.0115. DOI: 10.1089/ten.tea.2017.0115. PMID: 28699387.
Article
58. Park JS, Park KH. 2016; Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded in PLGA microspheres. Biomater Res. 20:4. https://doi.org/10.1186/s40824-016-0051-9. DOI: 10.1186/s40824-016-0051-9. PMID: 26893909. PMCID: PMC4758155.
Article
59. Bueno DF, Kerkis I, Costa AM, Martins MT, Kobayashi GS, Zucconi E, et al. 2009; New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients. Tissue Eng Part A. 15:427–35. https://doi.org/10.1089/ten.tea.2007.0417. DOI: 10.1089/ten.tea.2007.0417. PMID: 18816169.
Article
60. Fliefel R, Ehrenfeld M, Otto S. 2018; Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: a systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med. 12:1780–97. https://doi.org/10.1002/term.2697. DOI: 10.1002/term.2697. PMID: 29763985.
Article
61. He Y, Lin S, Ao Q, He X. 2020; The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Res Ther. 11:338. https://doi.org/10.1186/s13287-020-01858-6. DOI: 10.1186/s13287-020-01858-6. PMID: 32746906. PMCID: PMC7398348.
Article
62. Wu L, Zhao X, He B, Jiang J, Xie XJ, Liu L. 2016; The possible roles of biological bone constructed with peripheral blood derived EPCs and BMSCs in osteogenesis and angiogenesis. Biomed Res Int. 2016:8168943. https://doi.org/10.1155/2016/8168943. DOI: 10.1155/2016/8168943. PMID: 27195296. PMCID: PMC4852345.
Article
63. Inglis S, Christensen D, Wilson DI, Kanczler JM, Oreffo RO. 2016; Human endothelial and foetal femur-derived stem cell co-cultures modulate osteogenesis and angiogenesis. Stem Cell Res Ther. 7:13. https://doi.org/10.1186/s13287-015-0270-3. DOI: 10.1186/s13287-015-0270-3. PMID: 26781715. PMCID: PMC4717648.
Article
64. Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I. 2012; Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant. 21:1667–77. https://doi.org/10.3727/096368912X638937. DOI: 10.3727/096368912X638937. PMID: 22507568.
Article
65. Wang J, Ye Y, Tian H, Yang S, Jin X, Tong W, et al. 2011; In vitro osteogenesis of human adipose-derived stem cells by coculture with human umbilical vein endothelial cells. Biochem Biophys Res Commun. 412:143–9. https://doi.org/10.1016/j.bbrc.2011.07.062. DOI: 10.1016/j.bbrc.2011.07.062. PMID: 21806974.
Article
66. Rong Q, Li S, Zhou Y, Geng Y, Liu S, Wu W, et al. 2020; A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre-induction under screened co-culture conditions. Cell Prolif. 53:e12740. https://doi.org/10.1111/cpr.12740. DOI: 10.1111/cpr.12740. PMID: 31820506. PMCID: PMC7078770.
Article
67. Kim J, Kim HN, Lim KT, Kim Y, Pandey S, Garg P, et al. 2013; Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials. 34:7257–68. https://doi.org/10.1016/j.biomaterials.2013.06.029. DOI: 10.1016/j.biomaterials.2013.06.029. PMID: 23834896.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr