2. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. 2014; Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 155:654–62. DOI:
10.1016/j.pain.2013.11.013. PMID:
24291734.
Article
3. Cavalli E, Mammana S, Nicoletti F, Bramanti P, Mazzon E. 2019; The neuropathic pain: an overview of the current treatment and future therapeutic approaches. Int J Immunopathol Pharmacol. 33:2058738419838383. DOI:
10.1177/2058738419838383. PMID:
30900486. PMCID:
PMC6431761.
Article
4. Bouhassira D, Chassany O, Gaillat J, Hanslik T, Launay O, Mann C, et al. 2012; Patient perspective on herpes zoster and its complications: an observational prospective study in patients aged over 50 years in general practice. Pain. 153:342–9. DOI:
10.1016/j.pain.2011.10.026. PMID:
22138256.
Article
6. Hunyady Á, Hajna Z, Gubányi T, Scheich B, Kemény Á, Gaszner B, et al. 2019; Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms. Brain Res Bull. 147:165–73. DOI:
10.1016/j.brainresbull.2019.01.015. PMID:
30664920.
Article
8. Chen W, Marvizon JC. 2020; Neurokinin 1 receptor activation in the rat spinal cord maintains latent sensitization, a model of inflammatory and neuropathic chronic pain. Neuropharmacology. 177:108253. DOI:
10.1016/j.neuropharm.2020.108253. PMID:
32736088.
Article
9. Ramírez-García PD, Retamal JS, Shenoy P, Imlach W, Sykes M, Truong N, et al. 2019; A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat Nanotechnol. 14:1150–9. DOI:
10.1038/s41565-019-0568-x. PMID:
31686009. PMCID:
PMC7765343.
Article
10. Teodoro FC, Tronco Júnior MF, Zampronio AR, Martini AC, Rae GA, Chichorro JG. 2013; Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides. 47:199–206. DOI:
10.1016/j.npep.2012.10.005. PMID:
23177733.
Article
11. Gautam M, Prasoon P, Kumar R, Reeta KH, Kaler S, Ray SB. 2016; Role of neurokinin type 1 receptor in nociception at the periphery and the spinal level in the rat. Spinal Cord. 54:172–82. DOI:
10.1038/sc.2015.206. PMID:
26690860.
Article
12. Hirsch S, Corradini L, Just S, Arndt K, Doods H. 2013; The CGRP receptor antagonist BIBN4096BS peripherally alleviates inflammatory pain in rats. Pain. 154:700–7. DOI:
10.1016/j.pain.2013.01.002. PMID:
23473785.
Article
13. Christensen SL, Petersen S, Kristensen DM, Olesen J, Munro G. 2019; Targeting CGRP via receptor antagonism and antibody neutralisation in two distinct rodent models of migraine-like pain. Cephalalgia. 39:1827–37. DOI:
10.1177/0333102419861726. PMID:
31288556.
Article
14. Lee SE, Kim JH. 2007; Involvement of substance P and calcitonin gene-related peptide in development and maintenance of neuropathic pain from spinal nerve injury model of rat. Neurosci Res. 58:245–9. DOI:
10.1016/j.neures.2007.03.004. PMID:
17428562.
Article
15. Baron R, Binder A, Wasner G. 2010; Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 9:807–19. DOI:
10.1016/S1474-4422(10)70143-5.
Article
17. Hama A, Sagen J. 2014; Selective antinociceptive effects of a combination of the N-methyl-D-aspartate receptor peptide antagonist [Ser(1)]histogranin and morphine in rat models of pain. Pharmacol Res Perspect. 2:e00032. DOI:
10.1002/prp2.32. PMID:
25505581. PMCID:
PMC4184704.
Article
18. Michot B, Bourgoin S, Viguier F, Hamon M, Kayser V. 2012; Differential effects of calcitonin gene-related peptide receptor blockade by olcegepant on mechanical allodynia induced by ligation of the infraorbital nerve vs the sciatic nerve in the rat. Pain. 153:1939–48. DOI:
10.1016/j.pain.2012.06.009. PMID:
22795918.
Article
19. Betti C, Starnowska J, Mika J, Dyniewicz J, Frankiewicz L, Novoa A, et al. 2015; dual alleviation of acute and neuropathic pain by fused opioid agonist-neurokinin 1 antagonist peptidomimetics. ACS Med Chem Lett. 6:1209–14. DOI:
10.1021/acsmedchemlett.5b00359. PMID:
26713106. PMCID:
PMC4677362.
Article
21. Medeiros P, Dos Santos IR, Júnior IM, Palazzo E, da Silva JA, Machado HR, et al. 2021; An adapted chronic constriction injury of the sciatic nerve produces sensory, affective, and cognitive impairments: a peripheral mononeuropathy model for the study of comorbid neuropsychiatric disorders associated with neuropathic pain in rats. Pain Med. 22:338–51. DOI:
10.1093/pm/pnaa206. PMID:
32875331.
Article
22. Mannangatti P, Sundaramurthy S, Ramamoorthy S, Jayanthi LD. 2017; Differential effects of aprepitant, a clinically used neurokinin-1 receptor antagonist on the expression of conditioned psychostimulant versus opioid reward. Psychopharmacology (Berl). 234:695–705. DOI:
10.1007/s00213-016-4504-6. PMID:
28013351. PMCID:
PMC5266628.
Article
23. Mulder IA, Li M, de Vries T, Qin T, Yanagisawa T, Sugimoto K, et al. 2020; Anti-migraine calcitonin gene-related peptide receptor antagonists worsen cerebral ischemic outcome in mice. Ann Neurol. 88:771–84. DOI:
10.1002/ana.25831. PMID:
32583883. PMCID:
PMC7540520.
Article
25. Greco R, Mangione AS, Siani F, Blandini F, Vairetti M, Nappi G, et al. 2014; Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia. 34:594–604. DOI:
10.1177/0333102413517776. PMID:
24366981.
Article
29. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, et al. 2006; Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry. 59:216–23. DOI:
10.1016/j.biopsych.2005.07.013. PMID:
16248986.
Article
30. Tebas P, Tuluc F, Barrett JS, Wagner W, Kim D, Zhao H, et al. 2011; A randomized, placebo controlled, double masked phase IB study evaluating the safety and antiviral activity of aprepitant, a neurokinin-1 receptor antagonist in HIV-1 infected adults. PLoS One. 6:e24180. DOI:
10.1371/journal.pone.0024180. PMID:
21931661. PMCID:
PMC3169584.
Article
31. Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, et al. 2016; A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 36:887–98. DOI:
10.1177/0333102416653233. PMID:
27269043.
Article
32. Herbert MK, Holzer P. 2002; [Why are substance P(NK1)-receptor antagonists ineffective in pain treatment?]. Anaesthesist. 51:308–19. German. DOI:
10.1007/s00101-002-0296-7. PMID:
12063723.
33. Hill R. 2000; NK1 (substance P) receptor antagonists--why are they not analgesic in humans? Trends Pharmacol Sci. 21:244–6. DOI:
10.1016/S0165-6147(00)01502-9.
34. Kroenke K, Outcalt S, Krebs E, Bair MJ, Wu J, Chumbler N, et al. 2013; Association between anxiety, health-related quality of life and functional impairment in primary care patients with chronic pain. Gen Hosp Psychiatry. 35:359–65. DOI:
10.1016/j.genhosppsych.2013.03.020. PMID:
23639186.
Article
35. De Gregorio D, McLaughlin RJ, Posa L, Ochoa-Sanchez R, Enns J, Lopez-Canul M, et al. 2019; Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain. 160:136–50. DOI:
10.1097/j.pain.0000000000001386. PMID:
30157131. PMCID:
PMC6319597.
Article
36. McWilliams LA, Goodwin RD, Cox BJ. 2004; Depression and anxiety associated with three pain conditions: results from a nationally representative sample. Pain. 111:77–83. DOI:
10.1016/j.pain.2004.06.002. PMID:
15327811.
Article
37. Roeska K, Doods H, Arndt K, Treede RD, Ceci A. 2008; Anxiety-like behaviour in rats with mononeuropathy is reduced by the analgesic drugs morphine and gabapentin. Pain. 139:349–57. DOI:
10.1016/j.pain.2008.05.003. PMID:
18565660.
Article
38. Wu Y, Yao X, Jiang Y, He X, Shao X, Du J, et al. 2017; Pain aversion and anxiety-like behavior occur at different times during the course of chronic inflammatory pain in rats. J Pain Res. 10:2585–93. DOI:
10.2147/JPR.S139679. PMID:
29158690. PMCID:
PMC5683785.
Article
40. Zocchi A, Varnier G, Arban R, Griffante C, Zanetti L, Bettelini L, et al. 2003; Effects of antidepressant drugs and GR 205171, an neurokinin-1 (NK1) receptor antagonist, on the response in the forced swim test and on monoamine extracellular levels in the frontal cortex of the mouse. Neurosci Lett. 345:73–6. DOI:
10.1016/S0304-3940(03)00305-7.
Article
41. Borbély É, Hajna Z, Nabi L, Scheich B, Tékus V, László K, et al. 2017; Hemokinin-1 mediates anxiolytic and anti-depressant-like actions in mice. Brain Behav Immun. 59:219–32. DOI:
10.1016/j.bbi.2016.09.004. PMID:
27621226.
Article
42. Schorscher-Petcu A, Austin JS, Mogil JS, Quirion R. 2009; Role of central calcitonin gene-related peptide (CGRP) in locomotor and anxiety- and depression-like behaviors in two mouse strains exhibiting a CGRP-dependent difference in thermal pain sensitivity. J Mol Neurosci. 39:125–36. DOI:
10.1007/s12031-009-9201-z. PMID:
19381879.
Article
43. Araya EI, Turnes JM, Barroso AR, Chichorro JG. 2020; Contribution of intraganglionic CGRP to migraine-like responses in male and female rats. Cephalalgia. 40:689–700. DOI:
10.1177/0333102419896539. PMID:
31856582.
Article
44. Puig S, Sorkin LS. 1996; Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain. 64:345–55. DOI:
10.1016/0304-3959(95)00121-2.
Article
45. Cho SY, Park AR, Yoon MH, Lee HG, Kim WM, Choi JI. 2013; Antinociceptive effect of intrathecal nefopam and interaction with morphine in formalin-induced pain of rats. Korean J Pain. 26:14–20. DOI:
10.3344/kjp.2013.26.1.14. PMID:
23342202. PMCID:
PMC3546204.
Article
46. Rivat C, Laboureyras E, Laulin JP, Le Roy C, Richebé P, Simonnet G. 2007; Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology. 32:2217–28. DOI:
10.1038/sj.npp.1301340. PMID:
17299508.
Article