J Korean Assoc Oral Maxillofac Surg.  2022 Feb;48(1):3-12. 10.5125/jkaoms.2022.48.1.3.

Next generation sequencing-based salivary biomarkers in oral squamous cell carcinoma

Affiliations
  • 1Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea

Abstract

Selection of potential disease-specific biomarkers from saliva or epithelial tissues through next generation sequencing (NGS)-based protein studies has recently become possible. The early diagnosis of oral squamous cell carcinoma (OSCC) has been difficult, if not impossible, until now due to the lack of an effective OSCC biomarker and efficient molecular validation method. The aim of this study was to summarize the advances in the application of NGS in cancer research and to propose potential proteomic and genomic saliva biomarkers for NGS-based study in OSCC screening and diagnosis programs. We have reviewed four categories including definitions and use of NGS, salivary biomarkers and OSCC, current biomarkers using the NGSbased technique, and potential salivary biomarker candidates in OSCC using NGS

Keyword

Next generation sequencing; Saliva; Biomarkers; Early diagnosis; Oral squamous cell carcinoma

Figure

  • Fig. 1 Schematic drawing of the Maxam and Gilbert’s chemical chain termination method for DNA sequencing developed in 1977 followed by Sanger’s ‘dideoxy method’9,10. (PCR: polymerase chain reaction)


Reference

References

1. Nguyen TTH, Sodnom-Ish B, Choi SW, Jung HI, Cho J, Hwang I, et al. 2020; Salivary biomarkers in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg. 46:301–12. https://doi.org/10.5125/jkaoms.2020.46.5.301. DOI: 10.5125/jkaoms.2020.46.5.301. PMID: 33122454. PMCID: PMC7609938.
Article
2. Salazar C, Nagadia R, Pandit P, Cooper-White J, Banerjee N, Dimitrova N, et al. 2014; A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol (Dordr). 37:331–8. https://doi.org/10.1007/s13402-014-0188-2. DOI: 10.1007/s13402-014-0188-2. PMID: 25156495.
Article
3. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. 2011; Diagnostic potential of saliva: current state and future applications. Clin Chem. 57:675–87. https://doi.org/10.1373/clinchem.2010.153767. DOI: 10.1373/clinchem.2010.153767. PMID: 21383043.
Article
4. Schulz BL, Cooper-White J, Punyadeera CK. 2013; Saliva proteome research: current status and future outlook. Crit Rev Biotechnol. 33:246–59. https://doi.org/10.3109/07388551.2012.687361. DOI: 10.3109/07388551.2012.687361. PMID: 22612344.
Article
5. Genco RJ. 2012; Salivary diagnostic tests. J Am Dent Assoc. 143(10 Suppl):3S–5S. https://doi.org/10.14219/jada.archive.2012.0340. DOI: 10.14219/jada.archive.2012.0340. PMID: 23034835.
Article
6. Fábryová H, Celec P. 2014; On the origin and diagnostic use of salivary RNA. Oral Dis. 20:146–52. https://doi.org/10.1111/odi.12098. DOI: 10.1111/odi.12098. PMID: 23517132.
Article
7. Campuzano S, Yanez-Sedeno P, Pingarron JM. 2017; Electrochemical bioaffinity sensors for salivary biomarkers detection. TrAC Trends Anal Chem. 86:14–24. https://doi.org/10.1016/j.trac.2016.10.002. DOI: 10.1016/j.trac.2016.10.002.
Article
8. Malon RS, Sadir S, Balakrishnan M, Córcoles EP. 2014; Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed Res Int. 2014:962903. https://doi.org/10.1155/2014/962903. DOI: 10.1155/2014/962903. PMID: 25276835. PMCID: PMC4172994.
Article
9. Maxam AM, Gilbert W. 1977; A new method for sequencing DNA. Proc Natl Acad Sci U S A. 74:560–4. https://doi.org/10.1073/pnas.74.2.560. DOI: 10.1073/pnas.74.2.560. PMID: 265521. PMCID: PMC392330.
Article
10. Sanger F, Nicklen S, Coulson AR. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 74:5463–7. https://doi.org/10.1073/pnas.74.12.5463. DOI: 10.1073/pnas.74.12.5463. PMID: 271968. PMCID: PMC431765.
Article
11. Adams J. 2008; DNA sequencing technologies. Nat Educ. 1:193. DOI: 10.1038/nprot.2016.182,. PMID: 28055035.
12. Sanger F, Coulson AR. 1975; A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 94:441–8. https://doi.org/10.1016/0022-2836(75)90213-2. DOI: 10.1016/0022-2836(75)90213-2. PMID: 1100841.
Article
13. Behjati S, Tarpey PS. 2013; What is next generation sequencing? Arch Dis Child Educ Pract Ed. 98:236–8. https://doi.org/10.1136/archdischild-2013-304340. DOI: 10.1136/archdischild-2013-304340. PMID: 23986538. PMCID: PMC3841808.
Article
14. Goodwin S, McPherson JD, McCombie WR. 2016; Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 17:333–51. https://doi.org/10.1038/nrg.2016.49. DOI: 10.1038/nrg.2016.49. PMID: 27184599.
Article
15. Gabusi A, Gissi DB, Tarsitano A, Asioli S, Marchetti C, Montebugnoli L, et al. 2019; Intratumoral heterogeneity in recurrent metastatic squamous cell carcinoma of the oral cavity: new perspectives afforded by multiregion DNA sequencing and mtDNA analysis. J Oral Maxillofac Surg. 77:440–55. https://doi.org/10.1016/j.joms.2018.09.014. DOI: 10.1016/j.joms.2018.09.014. PMID: 30321517.
Article
16. Todorovic E, Dickson BC, Weinreb I. 2020; Salivary gland cancer in the era of routine next-generation sequencing. Head Neck Pathol. 14:311–20. https://doi.org/10.1007/s12105-020-01140-4. DOI: 10.1007/s12105-020-01140-4. PMID: 32124419. PMCID: PMC7235144.
Article
17. 2021. Massive parallel sequencing [Internet]. Wikipedia;San Francisco (CA): Available from: https://en.wikipedia.org/wiki/Massive_parallel_sequencing.
18. Harrington CT, Lin EI, Olson MT, Eshleman JR. 2013; Fundamentals of pyrosequencing. Arch Pathol Lab Med. 137:1296–303. https://doi.org/10.5858/arpa.2012-0463-RA. DOI: 10.5858/arpa.2012-0463-RA. PMID: 23991743.
Article
20. Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin JF. 2011; Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics. 12:245. https://doi.org/10.1186/1471-2164-12-245. DOI: 10.1186/1471-2164-12-245. PMID: 21592414. PMCID: PMC3116506.
Article
21. 2021. 454 Life sciences [Internet]. Wikipedia;San Francisco (CA): Available from: https://en.wikipedia.org/wiki/454_Life_Sciences. cited 2021 May 30.
22. Ravi RK, Walton K, Khosroheidari M. 2018; MiSeq: a next generation sequencing platform for genomic analysis. Methods Mol Biol. 1706:223–32. https://doi.org/10.1007/978-1-4939-7471-9_12. DOI: 10.1007/978-1-4939-7471-9_12. PMID: 29423801.
Article
23. Illumina. 2021. HiSeqTM sequencing systems: redefining the trajectory of sequencing [Internet]. Illumina;San Diego (CA): Available from: https://www.illumina.com/documents/products/datasheets/datasheet_hiseq_systems.pdf. cited 2021 May 30.
24. Illumina. 2021. Genome AnalyzerIIx system: the most proven, widely adopted next-generation sequencing platform [Internet]. Illumina;San Diego (CA): Available from: https://support.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_genome_analyzeriix.pdf. cited 2021 May 30.
25. Castellana S, Romani M, Valente EM, Mazza T. 2013; A solid quality-control analysis of AB SOLiD short-read sequencing data. Brief Bioinform. 14:684–95. https://doi.org/10.1093/bib/bbs048. DOI: 10.1093/bib/bbs048. PMID: 22877770.
Article
26. 2021. ABI Solid Sequencing [Internet]. Wikipedia;San Francisco (CA): Available from: https://en.wikipedia.org/wiki/ABI_Solid_Sequencing. cited 2021 May 30.
27. Thermo Fisher Scientific. 2021. Ion ProtonTM System for next-generation sequencing [Internet]. Thermo Fisher Scientific;Seoul: Available from: https://www.thermofisher.com/kr/ko/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence/ion-proton-system-for-next-generation-sequencing.html. cited 2021 May 30.
28. 2021. Complete genomics [Internet]. Wikipedia;San Francisco (CA): Available from: https://en.wikipedia.org/wiki/Complete_Genomics. cited 2021 May 30.
29. Thompson JF, Steinmann KE. 2010; Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol 2010. Chapter 7:Unit7.10:https://doi.org/10.1002/0471142727.mb0710s92. DOI: 10.1002/0471142727.mb0710s92. PMID: 20890904. PMCID: PMC2954431.
Article
30. 2021. Helicos single molecule fluorescent sequencing [Internet]. Wikipedia;San Francisco (CA): Available from: https://en.wikipedia.org/wiki/Helicos_single_molecule_fluorescent_sequencing. cited 2021 May 30.
31. PacBio. 2021. SMRT sequencing [Internet]. PacBio;Menlo Park (CA): Available from: https://www.pacb.com/smrt-science/smrt-sequencing/. cited 2021 May 30.
32. Wong DT. 2012; Salivaomics. J Am Dent Assoc. 143(10 Suppl):19S–24S. https://doi.org/10.14219/jada.archive.2012.0339. DOI: 10.14219/jada.archive.2012.0339. PMID: 23034834.
Article
33. Shah FD, Begum R, Vajaria BN, Patel KR, Patel JB, Shukla SN, et al. 2011; A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem. 26:326–34. https://doi.org/10.1007/s12291-011-0149-8. DOI: 10.1007/s12291-011-0149-8. PMID: 23024467. PMCID: PMC3210231.
Article
34. Singh P, Verma JK, Singh JK. 2020; Validation of salivary markers, IL-1β, IL-8 and Lgals3bp for detection of oral squamous cell carcinoma in an Indian population. Sci Rep. 10:7365. https://doi.org/10.1038/s41598-020-64494-3. DOI: 10.1038/s41598-020-64494-3. PMID: 32355279. PMCID: PMC7192911.
Article
35. Li Y, Zhou X, St John MA, Wong DT. 2004; RNA profiling of cell-free saliva using microarray technology. J Dent Res. 83:199–203. https://doi.org/10.1177/154405910408300303. DOI: 10.1177/154405910408300303. PMID: 14981119.
Article
36. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. 2009; Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 15:5473–7. https://doi.org/10.1158/1078-0432.CCR-09-0736. DOI: 10.1158/1078-0432.CCR-09-0736. PMID: 19706812. PMCID: PMC2752355.
Article
37. Patel RS, Jakymiw A, Yao B, Pauley BA, Carcamo WC, Katz J, et al. 2011; High resolution of microRNA signatures in human whole saliva. Arch Oral Biol. 56:1506–13. https://doi.org/10.1016/j.archoralbio.2011.05.015. DOI: 10.1016/j.archoralbio.2011.05.015. PMID: 21704302. PMCID: PMC3189266.
Article
38. Rapado-González Ó, López-Cedrún JL, López-López R, Rodríguez-Ces AM, Suárez-Cunqueiro MM. 2021; Saliva gene promoter hypermethylation as a biomarker in oral cancer. J Clin Med. 10:1931. https://doi.org/10.3390/jcm10091931. DOI: 10.3390/jcm10091931. PMID: 33947071. PMCID: PMC8124791.
Article
39. Viet CT, Schmidt BL. 2008; Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomarkers Prev. 17:3603–11. https://doi.org/10.1158/1055-9965.EPI-08-0507. DOI: 10.1158/1055-9965.EPI-08-0507. PMID: 19064577.
Article
40. Nakahara Y, Shintani S, Mihara M, Hino S, Hamakawa H. 2006; Detection of p16 promoter methylation in the serum of oral cancer patients. Int J Oral Maxillofac Surg. 35:362–5. https://doi.org/10.1016/j.ijom.2005.08.005. DOI: 10.1016/j.ijom.2005.08.005. PMID: 16298513.
Article
41. Viet CT, Jordan RC, Schmidt BL. 2007; DNA promoter hypermethylation in saliva for the early diagnosis of oral cancer. J Calif Dent Assoc. 35:844–9. PMID: 18240747.
42. Liao PH, Chang YC, Huang MF, Tai KW, Chou MY. 2000; Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol. 36:272–6. https://doi.org/10.1016/s1368-8375(00)00005-1. DOI: 10.1016/S1368-8375(00)00005-1. PMID: 10793330.
Article
43. Shpitzer T, Hamzany Y, Bahar G, Feinmesser R, Savulescu D, Borovoi I, et al. 2009; Salivary analysis of oral cancer biomarkers. Br J Cancer. 101:1194–8. https://doi.org/10.1038/sj.bjc.6605290. DOI: 10.1038/sj.bjc.6605290. PMID: 19789535. PMCID: PMC2768098.
Article
44. Zimmermann BG, Wong DT. 2008; Salivary mRNA targets for cancer diagnostics. Oral Oncol. 44:425–9. https://doi.org/10.1016/j.oraloncology.2007.09.009. DOI: 10.1016/j.oraloncology.2007.09.009. PMID: 18061522. PMCID: PMC2408659.
Article
45. Franzmann EJ, Reategui EP, Carraway KL, Hamilton KL, Weed DT, Goodwin WJ. 2005; Salivary soluble CD44: a potential molecular marker for head and neck cancer. Cancer Epidemiol Biomarkers Prev. 14:735–9. https://doi.org/10.1158/1055-9965.EPI-04-0546. DOI: 10.1158/1055-9965.EPI-04-0546. PMID: 15767360.
Article
46. 2021. TP53 tumor protein p53 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/7157. cited 2021 Feb 21.
47. Grünewald I, Vollbrecht C, Meinrath J, Meyer MF, Heukamp LC, Drebber U, et al. 2015; Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity. Oncotarget. 6:18224–37. https://doi.org/10.18632/oncotarget.4015. DOI: 10.18632/oncotarget.4015. PMID: 26053092. PMCID: PMC4627247.
Article
48. 2021. DAPK1 death associated protein kinase 1 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/1612.
49. Rettori MM, de Carvalho AC, Bomfim Longo AL, de Oliveira CZ, Kowalski LP, Carvalho AL, et al. 2013; Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis. 34:20–7. https://doi.org/10.1093/carcin/bgs311. DOI: 10.1093/carcin/bgs311. PMID: 23042095.
Article
50. 2021. TIMP3 TIMP metallopeptidase inhibitor 3 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/7078. cited 2021 Feb 21.
51. Sun W, Zaboli D, Wang H, Liu Y, Arnaoutakis D, Khan T, et al. 2012; Detection of TIMP3 promoter hypermethylation in salivary rinse as an independent predictor of local recurrence-free survival in head and neck cancer. Clin Cancer Res. 18:1082–91. https://doi.org/10.1158/1078-0432.CCR-11-2392. DOI: 10.1158/1078-0432.CCR-11-2392. PMID: 22228635. PMCID: PMC3288549.
Article
52. Cristaldi M, Mauceri R, Di Fede O, Giuliana G, Campisi G, Panzarella V. 2019; Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives. Front Physiol. 10:1476. https://doi.org/10.3389/fphys.2019.01476. DOI: 10.3389/fphys.2019.01476. PMID: 31920689. PMCID: PMC6914830.
Article
53. 2021. CDKN2A cyclin dependent kinase inhibitor 2A [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/1029. cited 2021 Feb 21.
54. 2021. MGMT O-6-methylguanine-DNA methyltransferase [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/4255. cited 2021 Feb 21.
55. 2021. CCND1 cyclin D1 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/595. cited 2021 Feb 21.
56. Ku BM, Jung HA, Sun JM, Ko YH, Jeong HS, Son YI, et al. 2014; High-throughput profiling identifies clinically actionable mutations in salivary duct carcinoma. J Transl Med. 12:299. https://doi.org/10.1186/s12967-014-0299-6. DOI: 10.1186/s12967-014-0299-6. PMID: 25343854. PMCID: PMC4216375.
Article
57. 2021. SERPINB5 serpin family B member 5 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/5268. cited 2021 Feb 21.
58. Chattopadhyay I, Panda M. 2019; Recent trends of saliva omics biomarkers for the diagnosis and treatment of oral cancer. J Oral Biosci. 61:84–94. https://doi.org/10.1016/j.job.2019.03.002. DOI: 10.1016/j.job.2019.03.002. PMID: 31109866.
Article
59. 2021. CXCL8 C-X-C motif chemokine ligand 8 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/3576. cited 2021 Feb 21.
60. Cheng J, Nonaka T, Wong DTW. 2019; Salivary exosomes as nanocarriers for cancer biomarker delivery. Materials (Basel). 12:654. https://doi.org/10.3390/ma12040654. DOI: 10.3390/ma12040654. PMID: 30795593. PMCID: PMC6416587.
Article
61. 2021. L1B interleukin 1 beta [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/3553. cited 2021 Feb 21.
62. Lee YH, Kim JH, Zhou H, Kim BW, Wong DT. 2012; Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma. J Mol Med (Berl). 90:427–34. https://doi.org/10.1007/s00109-011-0829-0. DOI: 10.1007/s00109-011-0829-0. PMID: 22095100.
Article
63. 2021. S100P S100 calcium binding protein P [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/6286. cited 2021 Feb 21.
64. Cheng YS, Jordan L, Rees T, Chen HS, Oxford L, Brinkmann O, et al. 2014; Levels of potential oral cancer salivary mRNA biomarkers in oral cancer patients in remission and oral lichen planus patients. Clin Oral Investig. 18:985–93. https://doi.org/10.1007/s00784-013-1041-0 Erratum in: Clin Oral Investig 2014;18:995. https://doi.org/10.1007/s00784-013-1127-8. DOI: 10.1007/s00784-013-1127-8. PMID: 23892499. PMCID: PMC3864601.
Article
65. 2021. MIR31 microRNA 31 [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/407035. cited 2021 Feb 21.
66. Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. 2012; Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck. 34:219–24. https://doi.org/10.1002/hed.21713. DOI: 10.1002/hed.21713. PMID: 22083872.
Article
67. 2021. MIR125A microRNA 125a [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/406910. cited 2021 Feb 21.
68. 2021. MIR200A microRNA 200a [Homo sapiens (human)] [Internet]. National Center for Biotechnology Information;Bethesda (MD): Available from: https://www.ncbi.nlm.nih.gov/gene/406983. cited 2021 Feb 21.
69. India Project Team of the International Cancer Genome Consortium. 2013; Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun. 4:2873. https://doi.org/10.1038/ncomms3873. DOI: 10.1038/ncomms3873. PMID: 24292195. PMCID: PMC3863896.
70. Shanmugam A, Hariharan AK, Hasina R, Nair JR, Katragadda S, Irusappan S, et al. 2021; Ultrasensitive detection of tumor-specific mutations in saliva of patients with oral cavity squamous cell carcinoma. Cancer. 127:1576–89. https://doi.org/10.1002/cncr.33393. DOI: 10.1002/cncr.33393. PMID: 33405231. PMCID: PMC8084899.
Article
71. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. 2018; Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 173:291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022. DOI: 10.1016/j.cell.2018.03.022. PMID: 29625048. PMCID: PMC5957518.
Article
72. Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, et al. 2013; Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 3:770–81. https://doi.org/10.1158/2159-8290.CD-12-0537. DOI: 10.1158/2159-8290.CD-12-0537. PMID: 23619168. PMCID: PMC3858325.
Article
73. Zammit AP, Sinha R, Cooper CL, Perry CFL, Frazer IH, Tuong ZK. 2018; Examining the contribution of smoking and HPV towards the etiology of oral cavity squamous cell carcinoma using high-throughput sequencing: a prospective observational study. PLoS One. 13:e0205406. https://doi.org/10.1371/journal.pone.0205406. DOI: 10.1371/journal.pone.0205406. PMID: 30308005. PMCID: PMC6181346.
Article
74. Fadhil RS, Wei MQ, Nikolarakos D, Good D, Nair RG. 2020; Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS One. 15:e0221779. https://doi.org/10.1371/journal.pone.0221779. DOI: 10.1371/journal.pone.0221779. PMID: 32208417. PMCID: PMC7092992.
Article
75. Nisha KJ, Janam P, Harshakumar K. 2019; Identification of a novel salivary biomarker miR-143-3p for periodontal diagnosis: a proof of concept study. J Periodontol. 90:1149–59. https://doi.org/10.1002/JPER.18-0729. DOI: 10.1002/JPER.18-0729. PMID: 31021403.
Article
76. Lu Z, He Q, Liang J, Li W, Su Q, Chen Z, et al. 2019; miR-31-5p is a potential circulating biomarker and therapeutic target for oral cancer. Mol Ther Nucleic Acids. 16:471–80. https://doi.org/10.1016/j.omtn.2019.03.012. DOI: 10.1016/j.omtn.2019.03.012. PMID: 31051332. PMCID: PMC6495075.
Article
77. Wang Y, Zeng G, Jiang Y. 2020; The emerging roles of miR-125b in cancers. Cancer Manag Res. 12:1079–88. https://doi.org/10.2147/CMAR.S232388. DOI: 10.2147/CMAR.S232388. PMID: 32104088. PMCID: PMC7024862.
Article
78. Korpal M, Kang Y. 2008; The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 5:115–9. https://doi.org/10.4161/rna.5.3.6558. DOI: 10.4161/rna.5.3.6558. PMID: 19182522. PMCID: PMC3532896.
Article
79. Kabzinski J, Maczynska M, Majsterek I. 2021; MicroRNA as a novel biomarker in the diagnosis of head and neck cancer. Biomolecules. 11:844. https://doi.org/10.3390/biom11060844. DOI: 10.3390/biom11060844. PMID: 34198889. PMCID: PMC8228566.
Article
80. Majewska H, Gorczyński A, Czapiewski P, Menon R, Mueller J, Lakis S, et al. 2021; ALK alterations in salivary gland carcinomas. Virchows Arch. 478:933–41. https://doi.org/10.1007/s00428-020-02971-w. DOI: 10.1007/s00428-020-02971-w. PMID: 33237469. PMCID: PMC8099847.
Article
81. Kim S, Lee JW, Park YS. 2020; The application of next-generation sequencing to define factors related to oral cancer and discover novel biomarkers. Life (Basel). 10:228. https://doi.org/10.3390/life10100228. DOI: 10.3390/life10100228. PMID: 33023080. PMCID: PMC7599837.
Article
82. Sembler-Møller ML, Belstrøm D, Locht H, Enevold C, Pedersen AML. 2019; Next-generation sequencing of whole saliva from patients with primary Sjögren's syndrome and non-Sjögren's sicca reveals comparable salivary microbiota. J Oral Microbiol. 11:1660566. https://doi.org/10.1080/20002297.2019.1660566. DOI: 10.1080/20002297.2019.1660566. PMID: 31497258. PMCID: PMC6720018.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr