Korean J Physiol Pharmacol.  2022 Mar;26(2):95-111. 10.4196/kjpp.2022.26.2.95.

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

Affiliations
  • 1College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
  • 2Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China.

Abstract

Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

Keyword

Chronic obstructive pulmonary disease; Glucocorticoid resistance; Metformin; Nuclear factor E2-related factor 2

Figure

  • Fig. 1 Chemical structure of MET. MET, metformin.

  • Fig. 2 Histopathological analysis of the lung in rats. (A) Pathological changes in the lung tissues (Scale bars: 100 μm). The magnification is indicated with arrows. (B) Average score of airway inflammation. (C) Alveolar damage index (DI). Data are expressed as means ± SD. MET, metformin; NAC, N-Acetylcysteine. *p < 0.01 vs. control group; #p < 0.05 or ##p < 0.01 vs. model group (n = 3).

  • Fig. 3 Effects of MET on inflammatory factors and oxidative stress parameters in lung tissue of COPD rats. (A) Effect of MET on the level of IL-8 in lung tissues of COPD rats. (B) Effect of MET on the level of TNF-α in lung tissues of COPD rats. (C) Effect of MET on the activity of GSH-Px in lung tissues of COPD rats. (D) Effect of MET on the activity of SOD in lung tissues of COPD rats. (E) Effect of MET on the level of MDA in lung tissues of COPD rats. Data are expressed as means ± SD. MET, metformin; NAC, N-Acetylcysteine; COPD, chronic obstructive pulmonary disease; IL, interleukin; GSH-Px, glutathione peroxidase; SOD, superoxide dismutase; MDA, malondialdehyde; TNF, tumor necrosis factor. *p < 0.01 vs. control group; #p < 0.05 or ##p < 0.01 vs. model group (n = 5).

  • Fig. 4 Immunohistochemical analysis of lung tissues in rats. (A) The immunohistochemistry results of MRP1, Nrf2, and HO-1 proteins in each group (scale bars: 50 μm). The magnification is indicated with arrows. (B) The IOD of MRP1, Nrf2, and HO-1 proteins in each group were analyzed. Data are expressed as means ± SD. Nrf2, nuclear factor E2-related factor 2; HO-1, heme oxygenase-1; MRP1, multidrug resistance protein 1; IOD, integral optical density; MET, metformin; NAC, N-Acetylcysteine. *p < 0.01 vs. control group; #p < 0.01 vs. model group (n = 5).

  • Fig. 5 Effects of MET on protein expression of Nrf2, HO-1, MRP1, and HDAC2 in lung tissues of COPD rats. Data are expressed as means ± SD. Nrf2, nuclear factor E2-related factor 2; HO-1, heme oxygenase-1; MRP1, multidrug resistance protein 1; MET, metformin; NAC, N-Acetylcysteine; HDAC2, histone deacetylase 2; COPD, chronic obstructive pulmonary disease. *p < 0.01 vs. control group; #p < 0.01 vs. model group (n = 3).

  • Fig. 6 Survival of 16HBE in the presence of different concentrations of MET for 12, 24, and 48 h. Data are expressed as means ± SD. MET, metformin; 16HBE, human bronchial epithelial. *p < 0.05 or **p < 0.01 vs. control group (n = 3).

  • Fig. 7 Effect of MET on IL-8 inhibition rates in each group. Data are expressed as means ± SD (n = 3). MET, metformin; IL, interleukin; CSE, cigarette smoke extract; DEX, dexamethasone.

  • Fig. 8 Effects of MET on the expression of Nrf2, HO-1, MRP1, HDAC2 proteins in cells with glucocorticoid resistance. Data are expressed as means ± SD. Nrf2, nuclear factor E2-related factor 2; HO-1, heme oxygenase-1; MRP1, multidrug resistance protein 1; MET, metformin; HDAC2, histone deacetylase 2; CSE, cigarette smoke extract; DEX, dexamethasone. *p < 0.01 vs. control group; #p < 0.05 or Δp < 0.01 vs. CSE group; Δp < 0.01 vs. DEX group or MET group (n = 3).

  • Fig. 9 Effect of SnPP on IL-8 inhibition rates. Data are expressed as means ± SD (n = 3). SnPP, tin protoporphyrin; IL, interleukin; CSE, cigarette smoke extract; DEX, dexamethasone; MET, metformin.

  • Fig. 10 Effect of MK571 on IL-8 inhibition rates. Data are expressed as means ± SD (n = 3). IL, interleukin; CSE, cigarette smoke extract; DEX, dexamethasone; MET, metformin.

  • Fig. 11 Effects of MET and MK571 on efflux function of MRP1. (A) Effects of MET and MK571 on 5-CF level. (B) Mean fluorescence intensity (MFI) in each group. Data are expressed as means ± SD. MRP1, multidrug resistance protein 1; MET, metformin; 5-CF, 5-carboxyfluorescein; CSE, cigarette smoke extract; DEX, dexamethasone; 5-CFDA, 5-carboxyfluorescein diacetate. *p < 0.01 vs. control group; **p < 0.01 vs. 5-CFDA group; #p < 0.01 vs. CSE group; Δ p < 0.01 vs. DEX+MET group (n = 5).

  • Fig. 12 MK571 significantly reduced the expression of HDAC2 protein and mRNA induced by MET. (A) Effect of 20 μM MK571 on the expression of HDAC2 protein. (B) Quantitative analysis results of protein expression in each group. Data are expressed as means ± SD. *p < 0.01 vs. control group; #p < 0.01 vs. CSE group; Δp < 0.01 vs. DEX+MET group (n = 3). (C) Effect of MK571 on mRNA expression of HDAC2. Data are expressed as means ± SD. *p < 0.01 vs. control group; #p < 0.01 vs. CSE group; Δp < 0.01 vs. DEX+MET group (n = 5). (D) Effects of different concentrations of MK571 on the expression of HDAC2 protein. (E) Quantitative analysis results of protein expression in each group. Data are expressed as means ± SD. MET, metformin; HDAC2, histone deacetylase 2; CSE, cigarette smoke extract; DEX, dexamethasone. *p < 0.05 or #p < 0.01 vs. control group (n = 3).

  • Fig. 13 The potential mechanism of MET alleviating COPD and CSE-induced GC resistance through activating Nrf2/HO-1 signaling pathway, which can promote the function and expression of MRP1 to increase the expression of HDAC2. MET, metformin; COPD, chronic obstructive pulmonary disease; CSE, cigarette smoke extract; GC, glucocorticoid; Nrf2, nuclear factor E2-related factor 2; HO-1, heme oxygenase-1; MRP1, multidrug resistance protein 1; HDAC2, histone deacetylase 2; 4-HNE, 4-hydroxynonenal; ROS, reactive oxygen species; SOD, superoxide dismutase.


Reference

1. Lareau SC, Fahy B, Meek P, Wang A. 2019; Chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med. 199:P1–P2. DOI: 10.1164/rccm.1991P1. PMID: 30592446.
Article
2. Rabe KF, Watz H. 2017; Chronic obstructive pulmonary disease. Lancet. 389:1931–1940. DOI: 10.1016/S0140-6736(17)31222-9. PMID: 22314182. PMCID: PMC7172377.
Article
3. Guan R, Wang J, Li Z, Ding M, Li D, Xu G, Wang T, Chen Y, Yang Q, Long Z, Cai Z, Zhang C, Liang X, Dong L, Zhao L, Zhang H, Sun D, Lu W. 2018; Sodium tanshinone IIA sulfonate decreases cigarette smoke-induced inflammation and oxidative stress via blocking the activation of MAPK/HIF-1α signaling pathway. Front Pharmacol. 9:263. DOI: 10.3389/fphar.2018.00263. PMID: 29765317. PMCID: PMC5938387.
Article
4. Gong J, Zhao H, Liu T, Li L, Cheng E, Zhi S, Kong L, Yao HW, Li J. 2019; Cigarette smoke reduces fatty acid catabolism, leading to apoptosis in lung endothelial cells: implication for pathogenesis of COPD. Front Pharmacol. 10:941. DOI: 10.3389/fphar.2019.00941. PMID: 31555131. PMCID: PMC6727183.
Article
5. Shi K, Chen X, Xie B, Yang SS, Liu D, Dai G, Chen Q. 2018; Celastrol alleviates chronic obstructive pulmonary disease by inhibiting cellular inflammation induced by cigarette smoke via the Ednrb/Kng1 signaling pathway. Front Pharmacol. 9:1276. DOI: 10.3389/fphar.2018.01276. PMID: 30498444. PMCID: PMC6249343.
Article
6. Anzalone G, Arcoleo G, Bucchieri F, Montalbano AM, Marchese R, Albano GD, Di Sano C, Moscato M, Gagliardo R, Ricciardolo FLM, Profita M. 2019; Cigarette smoke affects the onco-suppressor DAB2IP expression in bronchial epithelial cells of COPD patients. Sci Rep. 9:15682. DOI: 10.1038/s41598-019-52179-5. PMID: 31666665. PMCID: PMC6821751.
Article
7. van der Deen M, de Vries EG, Visserman H, Zandbergen W, Postma DS, Timens W, Timmer-Bosscha H. 2007; Cigarette smoke extract affects functional activity of MRP1 in bronchial epithelial cells. J Biochem Mol Toxicol. 21:243–251. DOI: 10.1002/jbt.20187. PMID: 17912704.
Article
8. Sun X, Feng X, Zheng D, Li A, Li C, Li S, Zhao Z. 2019; Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo. Clin Sci (Lond). 133:1523–1536. DOI: 10.1042/CS20190331. PMID: 31270147.
Article
9. Fang X, Wang X, Bai C. 2011; COPD in China: the burden and importance of proper management. Chest. 139:920–929. DOI: 10.1378/chest.10-1393. PMID: 21467059. PMCID: PMC7125604.
10. Li N, Nel AE. 2006; Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal. 8:88–98. DOI: 10.1089/ars.2006.8.88. PMID: 16487041.
Article
11. Lee W, Thomas PS. 2009; Oxidative stress in COPD and its measurement through exhaled breath condensate. Clin Transl Sci. 2:150–155. DOI: 10.1111/j.1752-8062.2009.00093.x. PMID: 20443881. PMCID: PMC5350676.
Article
12. López-Campos JL, Soler-Cataluña JJ, Miravitlles M. 2020; Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2019 report: future challenges. Arch Bronconeumol (Engl Ed). 56:65–67. DOI: 10.1016/j.arbres.2019.06.001. PMID: 31320191.
Article
13. Barnes PJ. 2017; Glucocorticosteroids. Handb Exp Pharmacol. 237:93–115. DOI: 10.1007/164_2016_98. PMID: 27864677.
Article
14. Yang IA, Clarke MS, Sim EH, Fong KM. 2012; Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. (7):CD002991. DOI: 10.1002/14651858.CD002991.pub3. PMID: 22786484.
Article
15. Cosío BG, Jahn A, Iglesias A, Shafiek H, Busquets X, Agustí A. 2015; Haemophilus influenzae induces steroid-resistant inflammatory responses in COPD. BMC Pulm Med. 15:157. DOI: 10.1186/s12890-015-0155-3. PMID: 26642881. PMCID: PMC4672509.
Article
16. Matera MG, Calzetta L, Gritti G, Gallo L, Perfetto B, Donnarumma G, Cazzola M, Rogliani P, Donniacuo M, Rinaldi B. 2018; Role of statins and mevalonate pathway on impaired HDAC2 activity induced by oxidative stress in human airway epithelial cells. Eur J Pharmacol. 832:114–119. DOI: 10.1016/j.ejphar.2018.05.023. PMID: 29782855.
Article
17. Marwick JA, Ito K, Adcock IM, Kirkham PA. 2007; Oxidative stress and steroid resistance in asthma and COPD: pharmacological manipulation of HDAC-2 as a therapeutic strategy. Expert Opin Ther Targets. 11:745–755. DOI: 10.1517/14728222.11.6.745. PMID: 17504013.
Article
18. Biswal S, Thimmulappa RK, Harvey CJ. 2012; Experimental therapeutics of Nrf2 as a target for prevention of bacterial exacerbations in COPD. Proc Am Thorac Soc. 9:47–51. DOI: 10.1513/pats.201201-009MS. PMID: 22550241. PMCID: PMC3359107.
Article
19. Pace E, Ferraro M, Di Vincenzo S, Cipollina C, Gerbino S, Cigna D, Caputo V, Balsamo R, Lanata L, Gjomarkaj M. 2013; Comparative cytoprotective effects of carbocysteine and fluticasone propionate in cigarette smoke extract-stimulated bronchial epithelial cells. Cell Stress Chaperones. 18:733–743. DOI: 10.1007/s12192-013-0424-0. PMID: 23580157. PMCID: PMC3789875.
Article
20. Huang D, Ma Z, He Y, Xiao Y, Luo H, Liang Q, Zhong X, Bai J, He Z. 2017; Long-term cigarette smoke exposure inhibits histone deacetylase 2 expression and enhances the nuclear factor-κB activation in skeletal muscle of mice. Oncotarget. 8:56726–56736. DOI: 10.18632/oncotarget.18089. PMID: 28915625. PMCID: PMC5593596.
Article
21. Meja KK, Rajendrasozhan S, Adenuga D, Biswas SK, Sundar IK, Spooner G, Marwick JA, Chakravarty P, Fletcher D, Whittaker P, Megson IL, Kirkham PA, Rahman I. 2008; Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol. 39:312–323. DOI: 10.1165/rcmb.2008-0012OC. PMID: 18421014. PMCID: PMC2542449.
Article
22. Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC. 2003; Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol. 50:319–336. DOI: 10.18388/abp.2003_3689. PMID: 12833161.
Article
23. Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, De Boer WI. 2002; 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 166:490–495. DOI: 10.1164/rccm.2110101. PMID: 12186826.
Article
24. Rahman I, Marwick J, Kirkham P. 2004; Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol. 68:1255–1267. DOI: 10.1016/j.bcp.2004.05.042. PMID: 15313424.
Article
25. Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, Rahman I. 2004; Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J. 18:1897–1899. DOI: 10.1096/fj.04-1506fje. PMID: 15456740.
Article
26. Li M, Zhong X, He Z, Wen M, Li J, Peng X, Liu G, Deng J, Zhang J, Bai J. 2012; Effect of erythromycin on cigarette-induced histone deacetylase protein expression and nuclear factor-κB activity in human macrophages in vitro. Int Immunopharmacol. 12:643–650. DOI: 10.1016/j.intimp.2011.12.022. PMID: 22265969.
Article
27. Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I. 2004; Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol. 31:633–642. DOI: 10.1165/rcmb.2004-0006OC. PMID: 15333327.
Article
28. Fang WF, Chen YM, Lin CY, Huang HL, Yeh H, Chang YT, Huang KT, Lin MC. 2018; Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression. J Inflamm (Lond). 15:3. DOI: 10.1186/s12950-018-0179-6. PMID: 29344006. PMCID: PMC5763578.
Article
29. Malhotra D, Thimmulappa RK, Mercado N, Ito K, Kombairaju P, Kumar S, Ma J, Feller-Kopman D, Wise R, Barnes P, Biswal S. 2011; Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest. 121:4289–4302. DOI: 10.1172/JCI45144. PMID: 22005302. PMCID: PMC3204828.
Article
30. Ma Q. 2013; Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. DOI: 10.1146/annurev-pharmtox-011112-140320. PMID: 23294312. PMCID: PMC4680839.
Article
31. Yu D, Liu X, Zhang G, Ming Z, Wang T. 2018; Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-κB signaling pathways. Front Pharmacol. 9:1001. DOI: 10.3389/fphar.2018.01001. PMID: 30294270. PMCID: PMC6159750.
Article
32. Kundu JK, Surh YJ. 2010; Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm Res. 27:999–1013. DOI: 10.1007/s11095-010-0096-8. PMID: 20354764.
Article
33. Ji L, Li H, Gao P, Shang G, Zhang DD, Zhang N, Jiang T. 2013; Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 8:e63404. DOI: 10.1371/journal.pone.0063404. PMID: 23667609. PMCID: PMC3646742.
Article
34. Chen HH, Chen YT, Huang YW, Tsai HJ, Kuo CC. 2012; 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med. 52:1054–1066. DOI: 10.1016/j.freeradbiomed.2011.12.012. PMID: 22245092.
Article
35. Burk RF, Hill KE, Nakayama A, Mostert V, Levander XA, Motley AK, Johnson DA, Johnson JA, Freeman ML, Austin LM. 2008; Selenium deficiency activates mouse liver Nrf2-ARE but vitamin E deficiency does not. Free Radic Biol Med. 44:1617–1623. DOI: 10.1016/j.freeradbiomed.2008.01.016. PMID: 18279678. PMCID: PMC2346531.
Article
36. Uddin MJ, Kim EH, Hannan MA, Ha H. 2021; Pharmacotherapy against oxidative stress in chronic kidney disease: promising small molecule natural products targeting Nrf2-HO-1 signaling. Antioxidants (Basel). 10:258. DOI: 10.3390/antiox10020258. PMID: 33562389. PMCID: PMC7915495. PMID: 052381c26def48a284a2ce985fa297a5.
Article
37. Xu X, Li H, Hou X, Li D, He S, Wan C, Yin P, Liu M, Liu F, Xu J. 2015; Punicalagin induces Nrf2/HO-1 expression via upregulation of PI3K/AKT pathway and inhibits LPS-induced oxidative stress in RAW264.7 macrophages. Mediators Inflamm. 2015:380218. DOI: 10.1155/2015/380218. PMID: 25969626. PMCID: PMC4417599.
Article
38. Verbon A, Leemans JC, Weijer S, Florquin S, Van Der Poll T. 2002; Mice lacking the multidrug resistance protein 1 have a transiently impaired immune response during tuberculosis. Clin Exp Immunol. 130:32–36. DOI: 10.1046/j.1365-2249.2002.01952.x. PMID: 12296850. PMCID: PMC1906484.
Article
39. Wen X, Iwata K, Ikuta K, Zhang X, Zhu K, Ibi M, Matsumoto M, Asaoka N, Liu J, Katsuyama M, Yabe-Nishimura C. 2019; NOX1/NADPH oxidase regulates the expression of multidrug resistance-associated protein 1 and maintains intracellular glutathione levels. FEBS J. 286:678–687. DOI: 10.1111/febs.14753. PMID: 30653821.
Article
40. Jungsuwadee P, Cole MP, Sultana R, Joshi G, Tangpong J, Butterfield DA, St Clair DK, Vore M. 2006; Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice. Mol Cancer Ther. 5:2851–2860. DOI: 10.1158/1535-7163.MCT-06-0297. PMID: 17121932.
Article
41. Yoshioka M, Sagara H, Takahashi F, Harada N, Nishio K, Mori A, Ushio H, Shimizu K, Okada T, Ota M, Ito YM, Nagashima O, Atsuta R, Suzuki T, Fukuda T, Fukuchi Y, Takahashi K. 2009; Role of multidrug resistance-associated protein 1 in the pathogenesis of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol. 296:L30–L36. DOI: 10.1152/ajplung.00026.2008. PMID: 18931056.
Article
42. Wang DL, Wang CY, Cao Y, Zhang X, Tao XH, Yang LL, Chen JP, Wang SS, Li ZG. 2014; Allyl isothiocyanate increases MRP1 function and expression in a human bronchial epithelial cell line. Oxid Med Cell Longev. 2014:547379. DOI: 10.1155/2014/547379. PMID: 24672635. PMCID: PMC3942196.
Article
43. Zhou Y, Xu X, Wu J, Xu L, Zhang M, Li Z, Wang D. 2020; Allyl isothiocyanate treatment alleviates chronic obstructive pulmonary disease through the Nrf2-Notch1 signaling and upregulation of MRP1. Life Sci. 243:117291. DOI: 10.1016/j.lfs.2020.117291. PMID: 31927049.
Article
44. Li M, Hu X, Xu Y, Hu X, Zhang C, Pang S. 2019; A possible mechanism of metformin in improving insulin resistance in diabetic rat models. Int J Endocrinol. 2019:3248527. DOI: 10.1155/2019/3248527. PMID: 31737069. PMCID: PMC6815615.
Article
45. Madka V, Kumar G, Pathuri G, Zhang Y, Lightfoot S, Asch AS, Mohammed A, Steele VE, Rao CV. 2020; Bisphosphonates zometa and fosamax synergize with metformin to prevent AOM-induced colon cancer in F344 rat model. Cancer Prev Res (Phila). 13:185–194. DOI: 10.1158/1940-6207.CAPR-19-0265. PMID: 31699708. PMCID: PMC7007371.
Article
46. Han Y, Yuan F, Deng C, He F, Zhang Y, Shen H, Chen Z, Qian L. 2019; Metformin decreases LPS-induced inflammatory response in rabbit annulus fibrosus stem/progenitor cells by blocking HMGB1 release. Aging (Albany NY). 11:10252–10265. DOI: 10.18632/aging.102453. PMID: 31772144. PMCID: PMC6914423.
Article
47. Wu MC, Ye WR, Zheng YJ, Zhang SS. 2017; Oxamate enhances the anti-inflammatory and insulin-sensitizing effects of metformin in diabetic mice. Pharmacology. 100:218–228. DOI: 10.1159/000478909. PMID: 28728159.
Article
48. Koh SJ, Kim JM, Kim IK, Ko SH, Kim JS. 2014; Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J Gastroenterol Hepatol. 29:502–510. DOI: 10.1111/jgh.12435. PMID: 24716225.
Article
49. Soberanes S, Misharin AV, Jairaman A, Morales-Nebreda L, McQuattie-Pimentel AC, Cho T, Hamanaka RB, Meliton AY, Reyfman PA, Walter JM, Chen CI, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Antalek M, Abdala-Valencia H, Chiarella SE, Sun KA, Woods PS, Ghio AJ, et al. 2019; Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis. Cell Metab. 29:335–347.e5. DOI: 10.1016/j.cmet.2018.09.019. PMID: 30318339. PMCID: PMC6365216.
Article
50. Vangaveti S, Das P, Kumar VL. 2021; Metformin and silymarin afford protection in cyclosporine A induced hepatorenal toxicity in rat by modulating redox status and inflammation. J Biochem Mol Toxicol. 35:e22614. DOI: 10.1002/jbt.22614. PMID: 32886845.
Article
51. Quaile MP, Melich DH, Jordan HL, Nold JB, Chism JP, Polli JW, Smith GA, Rhodes MC. 2010; Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol. 243:340–347. DOI: 10.1016/j.taap.2009.11.026. PMID: 20004680.
Article
52. Pandey A, Verma S, Kumar VL. 2017; Metformin maintains mucosal integrity in experimental model of colitis by inhibiting oxidative stress and pro-inflammatory signaling. Biomed Pharmacother. 94:1121–1128. DOI: 10.1016/j.biopha.2017.08.020. PMID: 28821163.
Article
53. Sanguinetti CM. 2016; N-acetylcysteine in COPD: why, how, and when? Multidiscip Respir Med. 11:8. DOI: 10.4081/mrm.2016.263. PMID: 26855777. PMCID: PMC4744393.
Article
54. Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. 2007; Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther. 20:9–22. DOI: 10.1016/j.pupt.2005.12.007. PMID: 16458553.
Article
55. Cai S, Chen P, Zhang C, Chen JB, Wu J. 2009; Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology. 14:354–359. DOI: 10.1111/j.1440-1843.2009.01511.x. PMID: 19341424.
Article
56. Xu L, Wu J, Li N, Jiang C, Guo Y, Cao P, Wang D. 2020; AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis. Korean J Physiol Pharmacol. 24:481–492. DOI: 10.4196/kjpp.2020.24.6.481. PMID: 33093270. PMCID: PMC7585591.
Article
57. Gueders MM, Bertholet P, Perin F, Rocks N, Maree R, Botta V, Louis R, Foidart JM, Noel A, Evrard B, Cataldo DD. 2008; A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochem Pharmacol. 75:514–526. DOI: 10.1016/j.bcp.2007.09.012. PMID: 17950252.
Article
58. Chillappagari S, Venkatesan S, Garapati V, Mahavadi P, Munder A, Seubert A, Sarode G, Guenther A, Schmeck BT, Tümmler B, Henke MO. 2014; Impaired TLR4 and HIF expression in cystic fibrosis bronchial epithelial cells downregulates hemeoxygenase-1 and alters iron homeostasis in vitro. Am J Physiol Lung Cell Mol Physiol. 307:L791–L799. DOI: 10.1152/ajplung.00167.2014. PMID: 25239913.
Article
59. Xu Y, Liu H, Song L. 2020; Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnology. 18:145. DOI: 10.1186/s12951-020-00703-5. PMID: 33076918. PMCID: PMC7570055. PMID: 991ca13e1cf94dfc8513666fc43d95cf.
Article
60. Agustí A, Hogg JC. 2019; Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 381:1248–1256. DOI: 10.1056/NEJMra1900475. PMID: 31553836.
Article
61. Liu L, Shang Y, Li M, Han X, Wang J, Wang J. 2015; Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway. Clin Exp Pharmacol Physiol. 42:520–529. DOI: 10.1111/1440-1681.12384. PMID: 25739561.
Article
62. Ruiz S, Pergola PE, Zager RA, Vaziri ND. 2013; Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 83:1029–1041. DOI: 10.1038/ki.2012.439. PMID: 23325084. PMCID: PMC3633725.
Article
63. Cheng L, Li F, Ma R, Hu X. 2015; Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of Nrf2 and inhibition of NF-κB. Int Immunopharmacol. 28:494–499. DOI: 10.1016/j.intimp.2015.07.011. PMID: 26209933.
Article
64. Shanmugam T, Selvaraj M, Poomalai S. 2016; Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: an in-vivo and in-silico study. Int Immunopharmacol. 39:128–139. DOI: 10.1016/j.intimp.2016.07.022. PMID: 27472294.
Article
65. Singla E, Puri G, Dharwal V, Naura AS. 2021; Gallic acid ameliorates COPD-associated exacerbation in mice. Mol Cell Biochem. 476:293–302. DOI: 10.1007/s11010-020-03905-5. PMID: 32965595.
Article
66. Cui W, Zhang Z, Zhang P, Qu J, Zheng C, Mo X, Zhou W, Xu L, Yao H, Gao J. 2018; Nrf2 attenuates inflammatory response in COPD/emphysema: crosstalk with Wnt3a/β-catenin and AMPK pathways. J Cell Mol Med. 22:3514–3525. DOI: 10.1111/jcmm.13628. PMID: 29659176. PMCID: PMC6010849.
Article
67. Marwick JA, Chung KF. 2010; Glucocorticoid insensitivity as a future target of therapy for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 5:297–309. DOI: 10.2147/COPD.S7390. PMID: 20856829. PMCID: PMC2939685.
Article
68. Chung KF, Marwick JA. 2010; Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci. 1203:85–91. DOI: 10.1111/j.1749-6632.2010.05600.x. PMID: 20716288.
Article
69. Fujita Y, Inagaki N. 2017; Metformin: new preparations and nonglycemic benefits. Curr Diab Rep. 17:5. DOI: 10.1007/s11892-017-0829-8. PMID: 28116648.
Article
70. Park CS, Bang BR, Kwon HS, Moon KA, Kim TB, Lee KY, Moon HB, Cho YS. 2012; Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase. Biochem Pharmacol. 84:1660–1670. DOI: 10.1016/j.bcp.2012.09.025. PMID: 23041647.
Article
71. Gao J, Yuan J, Wang Q, Lei T, Shen X, Cui B, Zhang F, Ding W, Lu Z. 2020; Metformin protects against PM2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase α2. Redox Biol. 28:101345. DOI: 10.1016/j.redox.2019.101345. PMID: 31669973. PMCID: PMC6838896.
72. Chen CZ, Hsu CH, Li CY, Hsiue TR. 2017; Insulin use increases risk of asthma but metformin use reduces the risk in patients with diabetes in a Taiwanese population cohort. J Asthma. 54:1019–1025. DOI: 10.1080/02770903.2017.1283698. PMID: 28135899.
Article
73. Forno E. 2016; Asthma and diabetes: does treatment with metformin improve asthma? Respirology. 21:1144–1145. DOI: 10.1111/resp.12869. PMID: 27533627. PMCID: PMC5021626.
Article
74. Al Faraj A, Sultana Shaik A, Pureza MA, Alnafea M, Halwani R. 2014; Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI. PLoS One. 9:e90829. DOI: 10.1371/journal.pone.0090829. PMID: 24598763. PMCID: PMC3945006.
Article
75. Song L, Guan XJ, Chen X, Cui ZL, Han FF, Guo XJ, Xu WG. 2014; Mesenchymal stem cells reduce cigarette smoke-induced inflammation and airflow obstruction in rats via TGF-β1 signaling. COPD. 11:582–590. DOI: 10.3109/15412555.2014.898032. PMID: 24766333.
Article
76. Zeng YY, Hu WP, Zuo YH, Wang XR, Zhang J. 2019; Altered serum levels of type I collagen turnover indicators accompanied by IL-6 and IL-8 release in stable COPD. Int J Chron Obstruct Pulmon Dis. 14:163–168. DOI: 10.2147/COPD.S188139. PMID: 30655663. PMCID: PMC6322508.
Article
77. Huang AX, Lu LW, Liu WJ, Huang M. 2016; Plasma inflammatory cytokine IL-4, IL-8, IL-10, and TNF-α levels correlate with pulmonary function in patients with asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome. Med Sci Monit. 22:2800–2808. DOI: 10.12659/MSM.896458. PMID: 27501772. PMCID: PMC4982526.
Article
78. Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, Yao YD, Yu Y, Xie Y, Luo P, Yao XS, Liu ZQ, Zhou H. 2018; Activation of Nrf2/HO-1 pathway by nardochinoid C inhibits inflammation and oxidative stress in lipopolysaccharide-stimulated macrophages. Front Pharmacol. 9:911. DOI: 10.3389/fphar.2018.00911. PMID: 30233360. PMCID: PMC6131578.
Article
79. Chen X, Su W, Wan T, Yu J, Zhu W, Tang F, Liu G, Olsen N, Liang D, Zheng SG. 2017; Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochem Pharmacol. 142:111–119. DOI: 10.1016/j.bcp.2017.06.136. PMID: 28684304.
Article
80. Adenuga D, Caito S, Yao H, Sundar IK, Hwang JW, Chung S, Rahman I. 2010; Nrf2 deficiency influences susceptibility to steroid resistance via HDAC2 reduction. Biochem Biophys Res Commun. 403:452–456. DOI: 10.1016/j.bbrc.2010.11.054. PMID: 21094147. PMCID: PMC3031165.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr