Korean J Physiol Pharmacol.  2022 Mar;26(2):87-94. 10.4196/kjpp.2022.26.2.87.

Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway

Affiliations
  • 1Department of Vasculocardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China

Abstract

Myocardial infarction promotes cardiac remodeling and myocardial fibrosis, thus leading to cardiac dysfunction or heart failure. Peiminine has been regarded as a traditional anti-fibrotic Chinese medicine in pulmonary fibrosis. However, the role of peiminine in myocardial infarction-induced myocardial injury and fibrosis remained elusive. Firstly, rat model of myocardial infarction was established using ligation of the left coronary artery, which were then intraperitoneally injected with 2 or 5 mg/kg peiminine once a day for 4 weeks. Echocardiography and haemodynamic evaluation results showed that peiminine treatment reduced left ventricular end-diastolic pressure, and enhanced maximum rate of increase/decrease of left ventricle pressure (± dP/dt max) and left ventricular systolic pressure, which ameliorate the cardiac function. Secondly, myocardial infarction-induced myocardial injury and infarct size were also attenuated by peiminine. Moreover, peiminine inhibited myocardial infarction-induced increase of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production, as well as the myocardial cell apoptosis, in the rats. Thirdly, peiminine also decreased the myocardial fibrosis related protein expression including collagen I and collagen III. Lastly, peiminine reduced the expression of p38 and phosphorylation of extracellular signal-regulated kinase 1/2 in rat model of myocardial infarction. In conclusion, peiminine has a cardioprotective effect against myocardial infarction-induced myocardial injury and fibrosis, which can be attributed to the inactivation of mitogen-activated protein kinase pathway.

Keyword

Fibrosis; Mitogen-activated protein kinase; Myocardial infarction; Myocardial injury; Peiminine

Figure

  • Fig. 1 Peiminine ameliorated cardiac function in myocardial infarction-induced rats. (A) Chemical structure of peiminine. (B) Peiminine administration attenuated myocardial infarction-induced decrease of left ventricular systolic pressure (LVSP) in rats. (C) Peiminine administration attenuated myocardial infarction-induced increase of left ventricular end-diastolic pressure (LVEDP) in rats. (D) Peiminine administration attenuated myocardial infarction-induced decrease of + dP/dt max in rats. (E) Peiminine administration attenuated myocardial infarction-induced decrease of – dP/dt max in rats. ** vs. sham, p < 0.01. #, ## vs. myocardial infarction (MI), p < 0.05, p < 0.01.

  • Fig. 2 Peiminine ameliorated myocardial infarction-induced tissues damage in rats. (A) Influence of left coronary artery ligation and peiminine administration on cardiomyocyte disturbances, inflammatory infiltration and structure of heart tissues detected by Hematoxylin-Eosin staining (×200). (B) Peiminine administration reduced myocardial infarction-induced increase of infarct size in rats detected by TTC staining. (C) Peiminine administration inhibited the myocardial infarction-induced increase of lactate dehydrogenase (LDH) in rats detected by ELISA. Peiminine administration inhibited the myocardial infarction-induced increase of creatine kinase-MB (CK-MB) in rats detected by ELISA. ** vs. sham, p < 0.01. ## vs. myocardial infarction (MI), p < 0.01.

  • Fig. 3 Peiminine ameliorated myocardial infarction-induced inflammation and apoptosis in rats. (A) Peiminine administration suppressed the myocardial infarction-induced increase of CK-MB in rats detected by ELISA. (B) Peiminine administration inhibited myocardial infarction-induced increase of myocardial cell apoptosis in rats detected by TUNEL staining (×200). (C) Peiminine administration inhibited the myocardial infarction-induced increase of Bax and decrease of Bcl-2 in rats detected by Western blot. CK-MB, creatine kinase-MB; IL, interleukin; TNF, tumor necrosis factor. ** vs. sham, p < 0.01. ## vs. myocardial infarction (MI), p < 0.01.

  • Fig. 4 Peiminine ameliorated myocardial infarction-induced fibrosis in rats. (A) Collagen fibers in hearts of rats post myocardial infarction in different groups. Masson’s trichrome staining (×200). (B) Peiminine administration decreased the myocardial infarction-induced collagen I and III overexpression in rats detected by Western blot. ** vs. sham, p < 0.01. ## vs. myocardial infarction (MI), p < 0.01.

  • Fig. 5 Peiminine suppressed the activation of MAPKs in myocardial infarction-induced rats. p38 expression and ERK1/2 phosphorylation in different groups detected by Western blot. MAPK, mitogen-activated protein kinase; ERK1/2, extracellular signal-regulated kinase 1/2. ** vs. sham, p < 0.01. ## vs. myocardial infarction (MI), p < 0.01.

  • Fig. 6 Peiminine exhibited anti-inflammatory, anti-apoptotic and anti-fibrotic activities to protect heart against from myocardial infarction through inactivation of MAPKs pathway. MAPK, mitogen-activated protein kinase; ERK1/2, extracellular signal-regulated kinase 1/2.


Reference

1. Jneid H, Alam M, Virani SS, Bozkurt B. 2013; Redefining myocardial infarction: what is new in the ESC/ACCF/AHA/WHF Third Universal Definition of myocardial infarction? Methodist Debakey Cardiovasc J. 9:169–172. DOI: 10.14797/mdcj-9-3-169. PMID: 24066201. PMCID: PMC3782325.
Article
2. Teringova E, Tousek P. 2017; Apoptosis in ischemic heart disease. . J Transl Med. 15:87. DOI: 10.1186/s12967-017-1191-y. PMID: 28460644. PMCID: PMC5412049.
Article
3. Roever L, Palandri Chagas AC. 2017; Editorial: Cardiac remodeling: new insights in physiological and pathological adaptations. Front Physiol. 8:751. DOI: 10.3389/fphys.2017.00751. PMID: 29018366. PMCID: PMC5622945.
Article
4. Gajarsa JJ, Kloner RA. 2011; Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 16:13–21. DOI: 10.1007/s10741-010-9181-7. PMID: 20623185.
Article
5. Çakır B, Kılıçkaya O. 2015; Mitogen-activated protein kinase cascades in Vitis vinifera. Front Plant Sci. 6:556. DOI: 10.3389/fpls.2015.00556. PMID: 26257761. PMCID: PMC4511077.
6. Qiu L, Liu X. 2019; Identification of key genes involved in myocardial infarction. Eur J Med Res. 24:22. DOI: 10.1186/s40001-019-0381-x. PMID: 31269974. PMCID: PMC6607516. PMID: 2998ee9e46864095bd464b854e02583e.
Article
7. Zhang Q, Lu L, Liang T, Liu M, Wang ZL, Zhang PY. 2017; MAPK pathway regulated the cardiomyocyte apoptosis in mice with post-infarction heart failure. Bratisl Lek Listy. 118:339–346. DOI: 10.4149/BLL_2017_065. PMID: 28664743.
Article
8. Matsumoto-Ida M, Takimoto Y, Aoyama T, Akao M, Takeda T, Kita T. 2006; Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol. 290:H709–H715. DOI: 10.1152/ajpheart.00186.2005. PMID: 16183734.
Article
9. Kumphune S, Bassi R, Jacquet S, Sicard P, Clark JE, Verma S, Avkiran M, O'Keefe SJ, Marber MS. 2010; A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580. J Biol Chem. 285:2968–2975. DOI: 10.1074/jbc.M109.079228. PMID: 19996096. PMCID: PMC2823430.
Article
10. Zhang Z, Zhou S, Mei Z, Zhang M. 2017; Inhibition of p38MAPK potentiates mesenchymal stem cell therapy against myocardial infarction injury in rats. Mol Med Rep. 16:3489–3493. DOI: 10.3892/mmr.2017.6973. PMID: 28713990.
Article
11. Bassi R, Heads R, Marber MS, Clark JE. 2008; Targeting p38-MAPK in the ischaemic heart: kill or cure? Curr Opin Pharmacol. 8:141–146. DOI: 10.1016/j.coph.2008.01.002. PMID: 18289939.
Article
12. Lyu Q, Tou F, Su H, Wu X, Chen X, Zheng Z. 2015; The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death. Biochem Biophys Res Commun. 462:38–45. DOI: 10.1016/j.bbrc.2015.04.102. PMID: 25935480.
Article
13. Tang Q, Wang Y, Ma L, Ding M, Li T, Nie Y, Gu Z. 2018; Peiminine serves as an adriamycin chemosensitizer in gastric cancer by modulating the EGFR/FAK pathway. Oncol Rep. 39:1299–1305. DOI: 10.3892/or.2018.6184. PMID: 29328433.
Article
14. Lim JM, Lee B, Min JH, Kim EY, Kim JH, Hong S, Kim JJ, Sohn Y, Jung HS. 2018; Effect of peiminine on DNCB-induced atopic dermatitis by inhibiting inflammatory cytokine expression in vivo and in vitro. Int Immunopharmacol. 56:135–142. DOI: 10.1016/j.intimp.2018.01.025. PMID: 29414643.
Article
15. Ruan X, Yang L, Cui WX, Zhang MX, Li ZH, Liu B, Wang Q. 2016; Optimization of supercritical fluid extraction of total alkaloids, peimisine, peimine and peiminine from the bulb of Fritillaria thunbergii Miq, and evaluation of antioxidant activities of the extracts. Materials (Basel). 9:524. DOI: 10.3390/ma9070524. PMID: 28773648. PMCID: PMC5456939.
Article
16. Lee B, Kim EY, Kim JH, Min JH, Jeong DW, Jun JY, Cho CY, Sohn Y, Jung HS. 2015; Antiallergic effects of peiminine through the regulation of inflammatory mediators in HMC-1 cells. Immunopharmacol Immunotoxicol. 37:351–358. DOI: 10.3109/08923973.2015.1059441. PMID: 26121924.
Article
17. Chen G, Liu J, Jiang L, Ran X, He D, Li Y, Huang B, Wang W, Liu D, Fu S. 2018; Peiminine protects dopaminergic neurons from inflammation-induced cell death by inhibiting the ERK1/2 and NF-κB signalling pathways. Int J Mol Sci. 19:821. DOI: 10.3390/ijms19030821. PMID: 29534526. PMCID: PMC5877682.
Article
18. Gong Q, Li Y, Ma H, Guo W, Kan X, Xu D, Liu J, Fu S. 2018; Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-κB, ERK1/2 and p38 signaling pathways. Int J Mol Sci. 19:2637. DOI: 10.3390/ijms19092637. PMID: 30200569. PMCID: PMC6164606.
Article
19. Guo H, Ji F, Liu B, Chen X, He J, Gong J. 2013; Peiminine ameliorates bleomycin-induced acute lung injury in rats. Mol Med Rep. 7:1103–1110. DOI: 10.3892/mmr.2013.1312. PMID: 23404624.
Article
20. Soriano FG, Guido MC, Barbeiro HV, Caldini EG, Lorigados CB, Nogueira AC. 2014; Endotoxemic myocardial dysfunction: subendocardial collagen deposition related to coronary driving pressure. Shock. 42:472–479. DOI: 10.1097/SHK.0000000000000232. PMID: 25051283.
21. Liu JJ, Huang N, Lu Y, Zhao M, Yu XJ, Yang Y, Yang YH, Zang WJ. 2015; Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep. 5:17108. DOI: 10.1038/srep17108. PMID: 26596640. PMCID: PMC4656999.
Article
22. Li C, Han R, Kang L, Wang J, Gao Y, Li Y, He J, Tian J. 2017; Pirfenidone controls the feedback loop of the AT1R/p38 MAPK/renin-angiotensin system axis by regulating liver X receptor-α in myocardial infarction-induced cardiac fibrosis. Sci Rep. 7:40523. DOI: 10.1038/srep40523. PMID: 28091615. PMCID: PMC5238375.
Article
23. Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR. 2017; Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp. (122):55353. DOI: 10.3791/55353. PMID: 28448010. PMCID: PMC5564466.
Article
24. Frangogiannis NG, Smith CW, Entman ML. 2002; The inflammatory response in myocardial infarction. Cardiovasc Res. 53:31–47. DOI: 10.1016/S0008-6363(01)00434-5. PMID: 11744011.
Article
25. Wan N, Liu X, Zhang XJ, Zhao Y, Hu G, Wan F, Zhang R, Zhu X, Xia H, Li H. 2015; Toll-interacting protein contributes to mortality following myocardial infarction through promoting inflammation and apoptosis. Br J Pharmacol. 172:3383–3396. DOI: 10.1111/bph.13130. PMID: 25765712. PMCID: PMC4500373.
Article
26. Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY, Li JL. 2021; Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in heart. Sci Total Environ. 773:145442. DOI: 10.1016/j.scitotenv.2021.145442. PMID: 33940727.
27. Fan D, Yang Z, Yuan Y, Wu QQ, Xu M, Jin YG, Tang QZ. 2017; Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct. 8:2875–2885. DOI: 10.1039/C7FO00204A. PMID: 28726929.
Article
28. Wang X, Guo Z, Ding Z, Mehta JL. 2018; Inflammation, autophagy, and apoptosis after myocardial infarction. J Am Heart Assoc. 7:e008024. DOI: 10.1161/JAHA.117.008024. PMID: 29680826. PMCID: PMC6015297.
Article
29. Anzai T. 2018; Inflammatory mechanisms of cardiovascular remodeling. Circ J. 82:629–635. DOI: 10.1253/circj.CJ-18-0063. PMID: 29415911.
Article
30. Zhang X, Hu W, Feng F, Xu J, Wu F. 2016; Apelin-13 protects against myocardial infarction-induced myocardial fibrosis. Mol Med Rep. 13:5262–5268. DOI: 10.3892/mmr.2016.5163. PMID: 27109054.
Article
31. Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ. 2005; Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol. 38:617–623. DOI: 10.1016/j.yjmcc.2005.01.012. PMID: 15808838.
Article
32. Zhu J, Gu H, Lv X, Yuan C, Ni P, Liu F. 2018; LINC-PINT activates the mitogen-activated protein kinase pathway to promote acute myocardial infarction by regulating miR-208a-3p. Circ J. 82:2783–2792. DOI: 10.1253/circj.CJ-18-0396. PMID: 30249926.
Article
33. Mitra A, Ray A, Datta R, Sengupta S, Sarkar S. 2014; Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2. J Cell Physiol. 229:1272–1282. DOI: 10.1002/jcp.24565. PMID: 24464634.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr