Int J Stem Cells.  2021 Nov;14(4):465-474. 10.15283/ijsc21078.

Sox9 Is Crucial for Mesenchymal Stem Cells to Enhance Cutaneous Wound Healing

Affiliations
  • 1Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
  • 2Department of Obstetric, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
  • 3Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
  • 4Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Weihai, China
  • 5Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China

Abstract

Background and Objectives
Human umbilical cord mesenchymal stem cells (HUC-MSCs) are promising candidates for cell-based therapy in regenerative medicine or other diseases due to their superior characteristics, including higher proliferation, faster self-renewal ability, lower immunogenicity, a noninvasive harvest procedure, easy expansion in vitro, and ethical access, compared with stem cells from other sources.
Methods and Results
In the present study, we knocked down the expression of SOX9 in HUC-MSCs by lentivirus interference and found that knockdown of SOX9 inhibited the proliferation and migration of HUC-MSCs and influenced the expression of cytokines (IL-6 and IL-8), growth factors (GM-CSF and VEGF) and stemness-related genes (OCT4 and SALL4). In addition, the repair effect of skin with burn injury in rats treated with HUC-MSCs transfected with sh-control was better than that rats treated with HUC-MSCs transfected with shSOX9 or PBS, and the accessory structures of the skin, including hair follicles and glands, were greater than those in the other groups. We found that knockdown of the expression of SOX9 obviously inhibited the expression of Ki67, CK14 and CK18.
Conclusions
In conclusion, this study will provide a guide for modifying HUC-MSCs by bioengineering technology in the future.

Keyword

HUC-MSCs; SOX9; Skin; Regenerative medicine

Figure

  • Fig. 1 Human umbilical cord mesenchymal stem cells. (A) HUC-MSCs growth from human umbilical cord tissue, which were observed on 3∼4 days for culture by inverted microscope. (B) HUC-MSCs fusion reached 80% at one week of culture.

  • Fig. 2 The proliferation and migration abilities of HUC-MSCs transfected with shSOX9 or shControl. (A) CCK-8 Kit detected the proliferation of HUC-MSCs transfected with shSOX9 or shControl. (B) Count the cell number of HUC-MSCs transfected with shSOX9 or shControl at different times. (C) Cloning ability of HUC-MSCs transfected with shSOX9 or shControl. (D) Statistical analysis of the clone number according to figure subpart C (n=3; ***p<0.001). (E) The migration of HUC-MSCs transfected with shSOX9 or shControl. (F) Statistical analysis of the migration number according to figure subpart E (n=3; ***p<0.001).

  • Fig. 3 The expression of cytokines and stemness related genes mRNA in HUC-MSCs transfected with shSOX9 or shControl. qRT-PCR was performed to detect the expression of IL-8 (A), IL-6 (B), GM-CSF (C), VEGF (D),OCT4 (E), SALL4 (F) (n=3; *p<0.05; **p<0.01; ***p<0.001; ns: no statistical difference).

  • Fig. 4 Effects of knockdown SOX9 in HUC-MSCs on repairing in wound injury model of rat. (A) The scar of rat in wound injury model treated with PBS or HUC-MSCs transfected with shcontrol or shsox9 at different timepoints day 1, 5, 9, 12, 15 (n=3). (B) Statistical analysis of scar area in back of rat treated with PBS or HUC-MSCs transfected with shcontrol or shsox9 at different timepoints from day 1, 5, 9, 12, 15 (n=3, ns: no statistical difference).

  • Fig. 5 Evaluate scar healing in rat treated with HUC-MSCs transfected with shSOX9 or shcontrol and PBS. HE staining the wound repair skin tissues of rat treated with PBS or HUC-MSCs transfected with shcontrol or shsox9 (n=3). (B) Statistical analysis the thickness of epidermis and dermis (n=3, ns: no statistical difference). (C) Immunofluorescence staining the expression of CK14, CK18 and ki67 in the wound repair skin tissues of rat treated with PBS or HUC-MSCs transfected with shcontrol or shsox9 (n=3).


Reference

References

1. Friedenstein AJ. 1976; Precursor cells of mechanocytes. Int Rev Cytol. 47:327–359. DOI: 10.1016/S0074-7696(08)60092-3. PMID: 11195.
Article
2. Ding DC, Shyu WC, Lin SZ. 2011; Mesenchymal stem cells. Cell Transplant. 20:5–14. DOI: 10.3727/096368910X. PMID: 21396235. PMCID: PMC8607643.
Article
3. Erices A, Conget P, Minguell JJ. 2000; Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 109:235–242. DOI: 10.1046/j.1365-2141.2000.01986.x. PMID: 10848804.
Article
4. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. 2001; Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228. DOI: 10.1089/107632701300062859. PMID: 11304456.
Article
5. Lai D, Wang F, Dong Z, Zhang Q. 2014; Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One. 9:e98749. DOI: 10.1371/journal.pone.0098749. PMID: 24879098. PMCID: PMC4039525.
Article
6. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A. 2009; Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton's jelly explants of human umbilical cord. Int J Hematol. 90:261–269. DOI: 10.1007/s12185-009-0377-3. PMID: 19657615.
Article
7. Yan K, Zhang R, Chen L, Chen F, Liu Y, Peng L, Sun H, Huang W, Sun C, Lv B, Li F, Cai Y, Tang Y, Zou Y, Du M, Qin L, Zhang H, Jiang X. 2014; Nitric oxide-mediated immunosuppressive effect of human amniotic membrane-de-rived mesenchymal stem cells on the viability and migration of microglia. Brain Res. 1590:1–9. DOI: 10.1016/j.brainres.2014.05.041. PMID: 24909791.
Article
8. Mazini L, Rochette L, Admou B, Amal S, Malka G. 2020; Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci. 21:1306. DOI: 10.3390/ijms21041306. PMID: 32075181. PMCID: PMC7072889.
Article
9. Joshi M, B Patil P, He Z, Holgersson J, Olausson M, Sumitran-Holgersson S. 2012; Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepato-cytes. Cytotherapy. 14:657–669. DOI: 10.3109/14653249.2012.663526. PMID: 22424216. PMCID: PMC3411318.
Article
10. Ding DC, Chang YH, Shyu WC, Lin SZ. 2015; Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 24:339–347. DOI: 10.3727/096368915X686841. PMID: 25622293.
Article
11. Chandravanshi B, Bhonde RR. 2018; Human umbilical cord-derived stem cells: isolation, characterization, differentiation, and application in treating diabetes. Crit Rev Biomed Eng. 46:399–412. DOI: 10.1615/CritRevBiomedEng.2018027377. PMID: 30806260.
Article
12. Jiang Y, Zhu W, Zhu J, Wu L, Xu G, Liu X. 2013; Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Trans-plant. 22:2291–2298. DOI: 10.3727/096368912X658818. PMID: 23127560.
Article
13. Fang TC, Pang CY, Chiu SC, Ding DC, Tsai RK. 2012; Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury. PLoS One. 7:e46504. DOI: 10.1371/journal.pone.0046504. PMID: 23029541. PMCID: PMC3459926.
Article
14. Jin JL, Liu Z, Lu ZJ, Guan DN, Wang C, Chen ZB, Zhang J, Zhang WY, Wu JY, Xu Y. 2013; Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res. 10:11–20. DOI: 10.2174/156720213804805936. PMID: 23151076.
Article
15. Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. 2013; Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr Stem Cell Res Ther. 8:144–155. DOI: 10.2174/1574888X11308020005. PMID: 23279098.
16. Kong D, Zhuang X, Wang D, Qu H, Jiang Y, Li X, Wu W, Xiao J, Liu X, Liu J, Li A, Wang J, Dou A, Wang Y, Sun J, Lv H, Zhang G, Zhang X, Chen S, Ni Y, Zheng C. 2014; Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab. 60:1969–1976. DOI: 10.7754/Clin.Lab.2014.140305. PMID: 25651730.
Article
17. Zhu L, Wang Z, Zheng X, Ding L, Han D, Yan H, Guo Z, Wang H. 2015; Haploidentical hematopoietic stem cell transplant with umbilical cord-derived multipotent mesenchymal cell infusion for the treatment of high-risk acute leukemia in children. Leuk Lymphoma. 56:1346–1352. DOI: 10.3109/10428194.2014.939970. PMID: 25098431.
Article
18. Li T, Xia M, Gao Y, Chen Y, Xu Y. 2015; Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther. 15:1293–1306. DOI: 10.1517/14712598.2015.1051528. PMID: 26067213.
Article
19. Iqbal T, Saaiq M, Ali Z. 2013; Epidemiology and outcome of burns: early experience at the country's first national burns centre. Burns. 39:358–362. DOI: 10.1016/j.burns.2012.07.011. PMID: 22867734.
Article
20. Blais M, Parenteau-Bareil R, Cadau S, Berthod F. 2013; Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med. 2:545–551. DOI: 10.5966/sctm.2012-0181. PMID: 23734060. PMCID: PMC3697822.
Article
21. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W. 2015; HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 33:2158–2168. DOI: 10.1002/stem.1771. PMID: 24964196.
Article
22. Zhang B, Shi Y, Gong A, Pan Z, Shi H, Yang H, Fu H, Yan Y, Zhang X, Wang M, Zhu W, Qian H, Xu W. 2016; HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the Wnt response via modulation of YAP during cutaneous regeneration. Stem Cells. 34:2485–2500. DOI: 10.1002/stem.2432. PMID: 27334574.
Article
23. Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi H, Zhu Y, Wu L, Pan Z, Zhu W, Qian H, Xu W. 2015; Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med. 4:513–522. DOI: 10.5966/sctm.2014-0267. PMID: 25824139. PMCID: PMC4414225.
Article
24. Lee YH, Saint-Jeannet JP. 2011; Sox9 function in craniofacial development and disease. Genesis. 49:200–208. DOI: 10.1002/dvg.20717. PMID: 21309066. PMCID: PMC3079054.
Article
25. Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. 2007; Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol. 39:2195–2214. DOI: 10.1016/j.biocel.2007.05.019. PMID: 17625949. PMCID: PMC2080623.
Article
26. Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, Kang R, Shi LL, Mok J, Lee MJ, Haydon RC. 2014; The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. 1:149–161. DOI: 10.1016/j.gendis.2014.09.004. PMID: 25685828. PMCID: PMC4326072.
Article
27. Luanpitpong S, Li J, Manke A, Brundage K, Ellis E, McLaughlin SL, Angsutararux P, Chanthra N, Voronkova M, Chen YC, Wang L, Chanvorachote P, Pei M, Issaragrisil S, Rojanasakul Y. 2016; SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene. 35:2824–2833. DOI: 10.1038/onc.2015.351. PMID: 26387547. PMCID: PMC4801727.
Article
28. Voronkova MA, Luanpitpong S, Rojanasakul LW, Castranova V, Dinu CZ, Riedel H, Rojanasakul Y. 2017; SOX9 regulates cancer stem-like properties and metastatic potential of single-walled carbon nanotube-exposed cells. Sci Rep. 7:11653. DOI: 10.1038/s41598-017-12037-8. PMID: 28912540. PMCID: PMC5599589.
Article
29. Azadniv M, Myers JR, McMurray HR, Guo N, Rock P, Coppage ML, Ashton J, Becker MW, Calvi LM, Liesveld JL. 2020; Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia. 34:391–403. DOI: 10.1038/s41375-019-0568-8. PMID: 31492897. PMCID: PMC7214245.
Article
30. Weissenberger M, Weissenberger MH, Gilbert F, Groll J, Evans CH, Steinert AF. 2020; Reduced hypertrophy in vitro after chondrogenic differentiation of adult human mesenchymal stem cells following adenoviral SOX9 gene delivery. BMC Musculoskelet Disord. 21:109. DOI: 10.1186/s12891-020-3137-4. PMID: 32066427. PMCID: PMC7026978.
Article
31. Yamada Y, Nakashima A, Doi S, Ishiuchi N, Kanai R, Miyasako K, Masaki T. 2021; Localization and maintenance of engrafted mesenchymal stem cells administered via renal artery in kidneys with ischemia-reperfusion injury. Int J Mol Sci. 22:4178. DOI: 10.3390/ijms22084178. PMID: 33920714. PMCID: PMC8072868.
Article
32. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, Wang X, Chen Y. 2008; Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int. 32:8–15. DOI: 10.1016/j.cellbi.2007.08.002. PMID: 17904875.
Article
33. Bie Q, Song H, Chen X, Yang X, Shi S, Zhang L, Zhao R, Wei L, Zhang B, Xiong H, Zhang B. 2021; IL-17B/IL-17RB signaling cascade contributes to self-renewal and tumorigenesis of cancer stem cells by regulating Beclin-1 ubiqui-tination. Oncogene. 40:2200–2216. DOI: 10.1038/s41388-021-01699-4. PMID: 33649532. PMCID: PMC7994204.
Article
34. Wang YF, Dang HF, Luo X, Wang QQ, Gao C, Tian YX. 2021; Downregulation of SOX9 suppresses breast cancer cell proliferation and migration by regulating apoptosis and cell cycle arrest. Oncol Lett. 22:517. DOI: 10.3892/ol.2021.12778. PMID: 33986877. PMCID: PMC8114479.
Article
35. Gao J, Zhang JY, Li YH, Ren F. 2015; Decreased expression of SOX9 indicates a better prognosis and inhibits the growth of glioma cells by inducing cell cycle arrest. Int J Clin Exp Pathol. 8:10130–10138. PMID: 26617720. PMCID: PMC4637535.
36. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. 2019; Mesenchymal stem cell migration and tissue repair. Cells. 8:784. DOI: 10.3390/cells8080784. PMID: 31357692. PMCID: PMC6721499.
Article
37. Zhong W, Zhu Z, Xu X, Zhang H, Xiong H, Li Q, Wei Y. 2019; Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels. J Exp Clin Cancer Res. 38:73. DOI: 10.1186/s13046-019-1081-7. PMID: 30755239. PMCID: PMC6373150.
Article
38. Wang J, Wang Y, Wang S, Cai J, Shi J, Sui X, Cao Y, Huang W, Chen X, Cai Z, Li H, Bardeesi AS, Zhang B, Liu M, Song W, Wang M, Xiang AP. 2015; Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget. 6:42825–42837. DOI: 10.18632/oncotarget.5739. PMID: 26517517. PMCID: PMC4767474.
Article
39. Liu CH, Hwang SM. 2005; Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 32:270–279. DOI: 10.1016/j.cyto.2005.11.003. PMID: 16377203.
Article
40. Yang H, Geng YH, Wang P, Yang H, Zhou YT, Zhang HQ, He HY, Fang WG, Tian XX. 2020; Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. Oncogene. 39:5795–5810. DOI: 10.1038/s41388-020-01402-z. PMID: 32724162.
Article
41. Polak KL, Chernosky NM, Smigiel JM, Tamagno I, Jackson MW. 2019; Balancing STAT activity as a therapeutic strategy. Cancers (Basel). 11:1716. DOI: 10.3390/cancers11111716. PMID: 31684144. PMCID: PMC6895889.
Article
42. Waugh DJ, Wilson C. 2008; The interleukin-8 pathway in cancer. Clin Cancer Res. 14:6735–6741. DOI: 10.1158/1078-0432.CCR-07-4843. PMID: 18980965.
Article
43. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, Li Y, Bai W, Li M, Ji H, Zhu D, Wu M, Liu Y. 2013; Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 22:3192–3202. DOI: 10.1089/scd.2013.0023. PMID: 23941289.
Article
44. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y. 2006; Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol. 80:267–274. DOI: 10.1016/j.yexmp.2005.07.004. PMID: 16214129.
Article
45. Chen B, Yu J, Wang Q, Zhao Y, Sun L, Xu C, Zhao X, Shen B, Wang M, Xu W, Zhu W. 2018; Human bone marrow mesenchymal stem cells promote gastric cancer growth via regulating c-Myc. Stem Cells Int. 2018:9501747. DOI: 10.1155/2018/9501747. PMID: 30186330. PMCID: PMC6116400.
Article
46. Stöckl S, Bauer RJ, Bosserhoff AK, Göttl C, Grifka J, Grässel S. 2013; Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J Cell Sci. 126(Pt 13):2890–2902. DOI: 10.1242/jcs.124305. PMID: 23606745.
Article
47. Stöckl S, Göttl C, Grifka J, Grässel S. 2013; Sox9 modulates proliferation and expression of osteogenic markers of adipose-derived stem cells (ASC). Cell Physiol Biochem. 31:703–717. DOI: 10.1159/000350089. PMID: 23711496.
Article
48. Wan YP, Xi M, He HC, Wan S, Hua W, Zen ZC, Liu YL, Zhou YL, Mo RJ, Zhuo YJ, Luo HW, Jiang FN, Zhong WD. 2017; Expression and clinical significance of SOX9 in renal cell carcinoma, bladder cancer and penile cancer. Oncol Res Treat. 40:15–20. DOI: 10.1159/000455145. PMID: 28118628.
Article
49. Luo J, Bao YC, Ji XX, Chen B, Deng QF, Zhou SW. 2017; Corrigendum to "SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth" [Biochem. Biophys. Res. Commun. 483 (2017) 880-884]. Biochem Biophys Res Commun. 486:57. DOI: 10.1016/j.bbrc.2017.02.122. PMID: 28292429.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr