Int J Stem Cells.  2021 Nov;14(4):386-399. 10.15283/ijsc21084.

Targeting Cancer Stem Cell Markers or Pathways: A Potential Therapeutic Strategy for Oral Cancer Treatment

Affiliations
  • 1Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
  • 2Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
  • 3Department of Biomedical Science, Jungwon University, Goesan, Korea
  • 4Division of Science Education, Kangwon National University, Chuncheon, Korea

Abstract

Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell-like properties, self-renewal potential, and differentiation capacity into multiple cell types. Critical genetic alterations or aberrantly activated signaling pathways associated with drug resistance and recurrence have been observed in multiple types of CSCs. In this context, CSCs are considered to be responsible for tumor initiation, growth, progression, therapeutic resistance, and metastasis. Therefore, to effectively eradicate CSCs, tremendous efforts have been devoted to identify specific target molecules that play a critical role in regulating their distinct functions and to develop novel therapeutics, such as proteins, monoclonal antibodies, selective small molecule inhibitors, and small antisense RNA (asRNA) drugs. Similar to other CSC types, oral CSCs can be characterized by certain pluripotency-associated markers, and oral CSCs can also survive and form 3D tumor spheres in suspension culture conditions. These oral CSC-targeting therapeutics selectively suppress specific surface markers or key signaling components and subsequently inhibit the stem-like properties of oral CSCs. A large number of new therapeutic candidates have been tested, and some products are currently in the pre-clinical or clinical development phase. In the present study, we review new oral CSC-targeted therapeutic strategies and discuss the various specific CSC surface markers and key signaling components involved in the stem-like properties, growth, drug resistance, and tumorigenicity of oral CSCs.

Keyword

Cancer stem cells; Stem cell-like characteristics; Drug resistance; Recurrence

Figure

  • Fig. 1 Schematic diagram summarizing the therapeutic strategies targeting oral CSCs. The diverse phenotypic heterogeneity and plasticity among cancer cells in bulk tumors have been explained by the CSC model of hierarchically organized tumors. Unlike bulk tumor cells, CSCs are intrinsically resistant to the majority of conventional chemotherapeutic agents; thus, the remaining CSC subpopulation can subsequently reconstitute tumors in patients with cellular heterogeneity.

  • Fig. 2 Schematic diagram summarizing the therapeutic strategies targeting oral CSC-specific surface markers or signaling pathways. Therapeutic efficiency could be enhanced by selectively targeting subtle expression differences in surface markers and alterations in various signaling regulators between CSC subpopulations and non-CSC subpopulations. For this reason, CSC markers can be used to identify CSC-enriched subpopulations and various therapeutic approaches effectively inhibit oral CSCs by targeting pluripotency-associated genes (ALDHs, CD44, CD133, and CD177) and CSC-specific signaling pathways (Wnt/β-catenin, Notch, and hedgehog signaling pathways).


Reference

References

1. Williams HK. 2000; Molecular pathogenesis of oral squamous carcinoma. Mol Pathol. 53:165–172. DOI: 10.1136/mp.53.4.165. PMID: 11040937. PMCID: PMC1186964.
Article
2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. 2009; Cancer statistics, 2009. CA Cancer J Clin. 59:225–249. DOI: 10.3322/caac.20006. PMID: 19474385.
Article
3. Kantola S, Parikka M, Jokinen K, Hyrynkangs K, Soini Y, Alho OP, Salo T. 2000; Prognostic factors in tongue cancer - relative importance of demographic, clinical and histopathological factors. Br J Cancer. 83:614–619. DOI: 10.1054/bjoc.2000.1323. PMID: 10944601. PMCID: PMC2363505.
Article
4. Sankaranarayanan R, Masuyer E, Swaminathan R, Ferlay J, Whelan S. 1998; Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res. 18:4779–4786. PMID: 9891557.
5. Carvalho AL, Magrin J, Kowalski LP. 2003; Sites of recurrence in oral and oropharyngeal cancers according to the treatment approach. Oral Dis. 9:112–118. DOI: 10.1034/j.1601-0825.2003.01750.x. PMID: 12945592.
Article
6. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. 2011; Global cancer statistics. CA Cancer J Clin. 61:69–90. DOI: 10.3322/caac.20107. PMID: 21296855.
Article
7. Catimel G, Verweij J, Mattijssen V, Hanauske A, Piccart M, Wanders J, Franklin H, Le Bail N, Clavel M, Kaye SB. 1994; Docetaxel (Taxotere): an active drug for the treatment of patients with advanced squamous cell carcinoma of the head and neck. EORTC Early Clinical Trials Group. Ann Oncol. 5:533–537. DOI: 10.1093/oxfordjournals.annonc.a058908. PMID: 7918125.
Article
8. Clavel M, Vermorken JB, Cognetti F, Cappelaere P, de Mulder PH, Schornagel JH, Tueni EA, Verweij J, Wildiers J, Clerico M, Dalesio O, Kirkpatrick A, Snow GB. 1994; Randomized comparison of cisplatin, methotrexate, bleomycin and vincristine (CABO) versus cisplatin and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck. A phase III study of the EORTC Head and Neck Cancer Cooperative Group. Ann Oncol. 5:521–526. DOI: 10.1093/oxfordjournals.annonc.a058906. PMID: 7522527.
Article
9. Haddad R, Sonis S, Posner M, Wirth L, Costello R, Braschayko P, Allen A, Mahadevan A, Flynn J, Burke E, Li Y, Tishler RB. 2009; Randomized phase 2 study of concomitant chemoradiotherapy using weekly carboplatin/paclitaxel with or without daily subcutaneous amifostine in patients with locally advanced head and neck cancer. Cancer. 115:4514–4523. DOI: 10.1002/cncr.24525. PMID: 19634161.
Article
10. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, Peyrade F, Benasso M, Vynnychenko I, De Raucourt D, Bokemeyer C, Schueler A, Amellal N, Hitt R. 2008; Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 359:1116–1127. DOI: 10.1056/NEJMoa0802656. PMID: 18784101.
Article
11. Greenberg JS, El Naggar AK, Mo V, Roberts D, Myers JN. 2003; Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma. Implication for therapeutic decision making. Cancer. 98:508–515. DOI: 10.1002/cncr.11526. PMID: 12879467.
Article
12. Shah JP, Lydiatt W. 1995; Treatment of cancer of the head and neck. CA Cancer J Clin. 45:352–368. DOI: 10.3322/canjclin.45.6.352. PMID: 7583907.
Article
13. Visvader JE, Lindeman GJ. 2012; Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 10:717–728. DOI: 10.1016/j.stem.2012.05.007. PMID: 22704512.
Article
14. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. 2003; Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 100:15178–15183. DOI: 10.1073/pnas.2036535100. PMID: 14645703. PMCID: PMC299944.
Article
15. O'Brien CA, Pollett A, Gallinger S, Dick JE. 2007; A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. DOI: 10.1038/nature05372. PMID: 17122772.
16. Fukuda K, Saikawa Y, Ohashi M, Kumagai K, Kitajima M, Okano H, Matsuzaki Y, Kitagawa Y. 2009; Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol. 34:1201–1207. DOI: 10.3892/ijo_00000248. PMID: 19360333.
Article
17. Abdulmajeed AA, Dalley AJ, Farah CS. 2013; Putative cancer stem cell marker expression in oral epithelial dysplasia and squamous cell carcinoma. J Oral Pathol Med. 42:755–760. DOI: 10.1111/jop.12073. PMID: 23614644.
Article
18. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. 2008; Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15:504–514. DOI: 10.1038/sj.cdd.4402283. PMID: 18049477.
Article
19. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. 2007; Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 1:313–323. DOI: 10.1016/j.stem.2007.06.002. PMID: 18371365.
Article
20. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. 2005; Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. DOI: 10.1158/0008-5472.CAN-05-2018. PMID: 16322242.
Article
21. da Silva SD, Hier M, Mlynarek A, Kowalski LP, Alaoui-Jamali MA. 2012; Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol. 3:149. DOI: 10.3389/fphar.2012.00149. PMID: 23060791. PMCID: PMC3459356.
Article
22. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. 2007; Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 104:973–978. DOI: 10.1073/pnas.0610117104. PMID: 17210912. PMCID: PMC1783424.
Article
23. Sinha N, Mukhopadhyay S, Das DN, Panda PK, Bhutia SK. 2013; Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol. 49:854–862. DOI: 10.1016/j.oraloncology.2013.06.010. PMID: 23876628.
Article
24. Todoroki K, Ogasawara S, Akiba J, Nakayama M, Naito Y, Seki N, Kusukawa J, Yano H. 2016; CD44v3+/CD24-cells possess cancer stem cell-like properties in human oral squamous cell carcinoma. Int J Oncol. 48:99–109. DOI: 10.3892/ijo.2015.3261. PMID: 26647656. PMCID: PMC4734600.
Article
25. Pozzi V, Sartini D, Rocchetti R, Santarelli A, Rubini C, Morganti S, Giuliante R, Calabrese S, Di Ruscio G, Orlando F, Provinciali M, Saccucci F, Lo Muzio L, Emanuelli M. 2015; Identification and characterization of cancer stem cells from head and neck squamous cell carcinoma cell lines. Cell Physiol Biochem. 36:784–798. DOI: 10.1159/000430138. PMID: 26021266.
Article
26. Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K. 2009; Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol. 45:633–639. DOI: 10.1016/j.oraloncology.2008.10.003. PMID: 19027347.
Article
27. Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, Ku HH, Chiou SH, Lo WL. 2009; Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 385:307–313. DOI: 10.1016/j.bbrc.2009.05.048. PMID: 19450560.
Article
28. Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. 2010; A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett. 289:151–160. DOI: 10.1016/j.canlet.2009.08.010. PMID: 19748175.
Article
29. Khammanivong A, Gopalakrishnan R, Dickerson EB. 2014; SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma. Mol Cancer. 13:260. DOI: 10.1186/1476-4598-13-260. PMID: 25471937. PMCID: PMC4265428.
Article
30. Shigeishi H, Biddle A, Gammon L, Emich H, Rodini CO, Gemenetzidis E, Fazil B, Sugiyama M, Kamata N, Mackenzie IC. 2013; Maintenance of stem cell self-renewal in head and neck cancers requires actions of GSK3β influenced by CD44 and RHAMM. Stem Cells. 31:2073–2083. DOI: 10.1002/stem.1418. PMID: 23649588.
Article
31. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC. 2011; Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or prolifera-tive. Cancer Res. 71:5317–5326. DOI: 10.1158/0008-5472.CAN-11-1059. PMID: 21685475.
Article
32. Boman BM, Huang E. 2008; Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J Clin Oncol. 26:2828–2838. DOI: 10.1200/JCO.2008.17.6941. PMID: 18539961.
Article
33. Croker AK, Allan AL. 2008; Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med. 12:374–390. DOI: 10.1111/j.1582-4934.2007.00211.x. PMID: 18182063. PMCID: PMC3822530.
Article
34. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. 2006; Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. DOI: 10.1158/0008-5472.CAN-06-3126. PMID: 16990346.
Article
35. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. 1988; Genetic alterations during colorectal-tumor development. N Engl J Med. 319:525–532. DOI: 10.1056/NEJM198809013190901. PMID: 2841597.
Article
36. Passegué E, Jamieson CH, Ailles LE, Weissman IL. 2003; Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A. 100(Suppl 1):11842–11849. DOI: 10.1073/pnas.2034201100. PMID: 14504387. PMCID: PMC304096.
Article
37. Hope KJ, Jin L, Dick JE. 2004; Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 5:738–743. DOI: 10.1038/ni1080. PMID: 15170211.
Article
38. Zhou D, Luo Y, Dingli D, Traulsen A. 2019; The invasion of de-differentiating cancer cells into hierarchical tissues. PLoS Comput Biol. 15:e1007167. DOI: 10.1371/journal.pcbi.1007167. PMID: 31260442. PMCID: PMC6625723.
Article
39. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. 2007; Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. DOI: 10.1126/science.1151526. PMID: 18029452.
Article
40. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007; Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. DOI: 10.1016/j.cell.2007.11.019. PMID: 18035408.
Article
41. Abdou AG, Maraee AH, El-Sayed EM, Elnaidany NF. 2011; Immunohistochemical expression of ezrin in cutaneous basal and squamous cell carcinomas. Ann Diagn Pathol. 15:394–401. DOI: 10.1016/j.anndiagpath.2011.05.005. PMID: 21849257.
Article
42. Reya T, Morrison SJ, Clarke MF, Weissman IL. 2001; Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. DOI: 10.1038/35102167. PMID: 11689955.
Article
43. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 2003; Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100:3983–3988. DOI: 10.1073/pnas.0530291100. PMID: 12629218. PMCID: PMC153034.
Article
44. Fillmore CM, Kuperwasser C. 2008; Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10:R25. DOI: 10.1186/bcr1982. PMID: 18366788. PMCID: PMC2397524.
Article
45. Mackenzie IC. 2004; Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa. J Oral Pathol Med. 33:71–78. DOI: 10.1111/j.1600-0714.2004.00157.x. PMID: 14720192.
Article
46. de Moraes FP, Lourenço SV, Ianez RC, de Sousa EA, Silva MM, Damascena AS, Kowalski LP, Soares FA, Coutinho-Camillo CM. 2017; Expression of stem cell markers in oral cavity and oropharynx squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 123:113–122. DOI: 10.1016/j.oooo.2016.09.009. PMID: 27866975.
Article
47. Mohanta S, Siddappa G, Valiyaveedan SG, Dodda Thimmasandra Ramanjanappa R, Das D, Pandian R, Khora SS, Kuriakose MA, Suresh A. 2017; Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma. Tumour Biol. 39:1010428317703656. DOI: 10.1177/1010428317703656. PMID: 28631562.
Article
48. Thapa R, Wilson GD. 2016; The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int. 2016:2087204. DOI: 10.1155/2016/2087204. PMID: 27200096. PMCID: PMC4856920.
49. Morath I, Hartmann TN, Orian-Rousseau V. 2016; CD44: more than a mere stem cell marker. Int J Biochem Cell Biol. 81(Pt A):166–173. DOI: 10.1016/j.biocel.2016.09.009. PMID: 27640754.
Article
50. Wang L, Zuo X, Xie K, Wei D. 2018; The role of CD44 and cancer stem cells. Methods Mol Biol. 1692:31–42. DOI: 10.1007/978-1-4939-7401-6_3. PMID: 28986884.
Article
51. Yan Y, Zuo X, Wei D. 2015; Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 4:1033–1043. DOI: 10.5966/sctm.2015-0048. PMID: 26136504. PMCID: PMC4542874.
Article
52. Tian S, Liu DH, Wang D, Ren F, Xia P. 2018; Aldehyde dehydrogenase 1 (ALDH1) promotes the toxicity of TRAIL in non-small cell lung cancer cells via post-transcriptional regulation of MEK-1 expression. Cell Physiol Biochem. 51:217–227. DOI: 10.1159/000495202. PMID: 30448845.
Article
53. Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, Wicha MS, Prince ME. 2010; Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 32:1195–1201. DOI: 10.1002/hed.21315. PMID: 20073073. PMCID: PMC2991066.
Article
54. Bertrand G, Maalouf M, Boivin A, Battiston-Montagne P, Beuve M, Levy A, Jalade P, Fournier C, Ardail D, Magné N, Alphonse G, Rodriguez-Lafrasse C. 2014; Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev Rep. 10:114–126. DOI: 10.1007/s12015-013-9467-y. PMID: 23955575.
Article
55. Cho K, Wang X, Nie S, Chen ZG, Shin DM. 2008; Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 14:1310–1316. DOI: 10.1158/1078-0432.CCR-07-1441. PMID: 18316549.
Article
56. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, De Maria R. 2006; Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 13:1238–1241. DOI: 10.1038/sj.cdd.4401872. PMID: 16456578.
Article
57. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC. 2008; Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 100:672–679. DOI: 10.1093/jnci/djn123. PMID: 18445819.
Article
58. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL. 2008; Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One. 3:e2428. DOI: 10.1371/journal.pone.0002428. PMID: 18560594. PMCID: PMC2413402.
Article
59. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD. 2007; Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 25:1315–1321. DOI: 10.1038/nbt1350. PMID: 17952057.
Article
60. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W, Frank MH. 2005; ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 65:4320–4333. DOI: 10.1158/0008-5472.CAN-04-3327. PMID: 15899824.
Article
61. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. 2006; Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. DOI: 10.1038/nature05236. PMID: 17051156.
Article
62. Phillips TM, McBride WH, Pajonk F. 2006; The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 98:1777–1785. DOI: 10.1093/jnci/djj495. PMID: 17179479.
63. Gemenetzidis E, Gammon L, Biddle A, Emich H, Mackenzie IC. 2015; Invasive oral cancer stem cells display resistance to ionising radiation. Oncotarget. 6:43964–43977. DOI: 10.18632/oncotarget.6268. PMID: 26540568. PMCID: PMC4791279.
Article
64. Chikamatsu K, Ishii H, Takahashi G, Okamoto A, Moriyama M, Sakakura K, Masuyama K. 2012; Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head Neck. 34:336–343. DOI: 10.1002/hed.21732. PMID: 21472882.
Article
65. LaBarge MA. 2010; The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 16:3121–3129. DOI: 10.1158/1078-0432.CCR-09-2933. PMID: 20530700. PMCID: PMC3182451.
Article
66. Lacerda L, Pusztai L, Woodward WA. 2010; The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat. 13:99–108. DOI: 10.1016/j.drup.2010.08.001. PMID: 20739212.
Article
67. Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH. 2010; Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat. 13:109–118. DOI: 10.1016/j.drup.2010.07.001. PMID: 20692200. PMCID: PMC2956795.
Article
68. Dou J, Gu N. 2010; Emerging strategies for the identification and targeting of cancer stem cells. Tumour Biol. 31:243–253. DOI: 10.1007/s13277-010-0023-y. PMID: 20336402.
Article
69. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. 1990; Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 75:1947–1950. DOI: 10.1182/blood.V75.10.1947.1947. PMID: 2337669.
Article
70. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. 2007; ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. DOI: 10.1016/j.stem.2007.08.014. PMID: 18371393. PMCID: PMC2423808.
Article
71. Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C, Schlegel J. 2010; Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 12:1024–1033. DOI: 10.1093/neuonc/noq070. PMID: 20627895. PMCID: PMC3018920.
Article
72. Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC, Kao SY, Chang CJ, Chiou SH. 2011; Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol. 2011:609259. DOI: 10.1155/2011/609259. PMID: 20936121. PMCID: PMC2948925.
Article
73. Chen YC, Chang CJ, Hsu HS, Chen YW, Tai LK, Tseng LM, Chiou GY, Chang SC, Kao SY, Chiou SH, Lo WL. 2010; Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol. 46:158–165. DOI: 10.1016/j.oraloncology.2009.11.007. PMID: 20036608.
Article
74. Chen C, Zhao S, Karnad A, Freeman JW. 2018; The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 11:64. DOI: 10.1186/s13045-018-0605-5. PMID: 29747682. PMCID: PMC5946470.
Article
75. Orian-Rousseau V. 2010; CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 46:1271–1277. DOI: 10.1016/j.ejca.2010.02.024. PMID: 20303742.
Article
76. Chikamatsu K, Takahashi G, Sakakura K, Ferrone S, Masuyama K. 2011; Immunoregulatory properties of CD44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head Neck. 33:208–215. DOI: 10.1002/hed.21420. PMID: 20848440. PMCID: PMC3426231.
Article
77. Yu Q, Stamenkovic I. 1999; Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13:35–48. DOI: 10.1101/gad.13.1.35. PMID: 9887098. PMCID: PMC316376.
Article
78. Kim HR, Wheeler MA, Wilson CM, Iida J, Eng D, Simpson MA, McCarthy JB, Bullard KM. 2004; Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res. 64:4569–4576. DOI: 10.1158/0008-5472.CAN-04-0202. PMID: 15231668.
Article
79. Golshani R, Lopez L, Estrella V, Kramer M, Iida N, Lokeshwar VB. 2008; Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res. 68:483–491. DOI: 10.1158/0008-5472.CAN-07-2140. PMID: 18199543.
Article
80. Yu Q, Toole BP, Stamenkovic I. 1997; Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med. 186:1985–1996. DOI: 10.1084/jem.186.12.1985. PMID: 9396767. PMCID: PMC2199167.
Article
81. Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, Wei H, Tian Z. 2009; Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep. 22:1129–1134. DOI: 10.3892/or_00000545. PMID: 19787230.
Article
82. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, García-Echeverría C, Schultz PG, Reddy VA. 2009; The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 106:268–273. DOI: 10.1073/pnas.0810956106. PMID: 19116269. PMCID: PMC2629188.
Article
83. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD, Fink LM, Ma Y, Wong MP. 2010; Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 5:e14062. DOI: 10.1371/journal.pone.0014062. PMID: 21124918. PMCID: PMC2988826.
Article
84. Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H, Mori M. 2008; CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 15:2927–2933. DOI: 10.1245/s10434-008-0074-0. PMID: 18663533.
Article
85. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. 2008; Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68:4311–4320. DOI: 10.1158/0008-5472.CAN-08-0364. PMID: 18519691. PMCID: PMC2553722.
Article
86. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC. 2009; Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 27:1006–1020. DOI: 10.1002/stem.30. PMID: 19415765. PMCID: PMC2746367.
Article
87. Yang YM, Chang JW. 2008; Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest. 26:725–733. DOI: 10.1080/07357900801941845. PMID: 18608209.
Article
88. Lee CJ, Dosch J, Simeone DM. 2008; Pancreatic cancer stem cells. J Clin Oncol. 26:2806–2812. DOI: 10.1200/JCO.2008.16.6702. PMID: 18539958.
Article
89. Boxberg M, Götz C, Haidari S, Dorfner C, Jesinghaus M, Drecoll E, Boskov M, Wolff KD, Weichert W, Haller B, Kolk A. 2018; Immunohistochemical expression of CD44 in oral squamous cell carcinoma in relation to histomorphological parameters and clinicopathological factors. Histopathology. 73:559–572. DOI: 10.1111/his.13496. PMID: 29468726.
Article
90. Ortiz RC, Lopes NM, Amôr NG, Ponce JB, Schmerling CK, Lara VS, Moyses RA, Rodini CO. 2018; CD44 and ALDH1 immunoexpression as prognostic indicators of invasion and metastasis in oral squamous cell carcinoma. J Oral Pathol Med. 47:740–747. DOI: 10.1111/jop.12734. PMID: 29791975.
Article
91. Wang SJ, Wong G, de Heer AM, Xia W, Bourguignon LY. 2009; CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope. 119:1518–1530. DOI: 10.1002/lary.20506. PMID: 19507218. PMCID: PMC2718060.
Article
92. Joshua B, Kaplan MJ, Doweck I, Pai R, Weissman IL, Prince ME, Ailles LE. 2012; Frequency of cells expressing CD44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head Neck. 34:42–49. DOI: 10.1002/hed.21699. PMID: 21322081.
Article
93. Oliveira LR, Oliveira-Costa JP, Araujo IM, Soave DF, Zanetti JS, Soares FA, Zucoloto S, Ribeiro-Silva A. 2011; Cancer stem cell immunophenotypes in oral squamous cell carcinoma. J Oral Pathol Med. 40:135–142. DOI: 10.1111/j.1600-0714.2010.00967.x. PMID: 21073537.
Article
94. Su J, Xu XH, Huang Q, Lu MQ, Li DJ, Xue F, Yi F, Ren JH, Wu YP. 2011; Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line. Arch Med Res. 42:15–21. DOI: 10.1016/j.arcmed.2011.01.007. PMID: 21376257.
Article
95. Gammon L, Biddle A, Fazil B, Harper L, Mackenzie IC. 2011; Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients. J Oral Pathol Med. 40:143–152. DOI: 10.1111/j.1600-0714.2010.00972.x. PMID: 21138479.
Article
96. Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. 2007; Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 36:594–603. DOI: 10.1111/j.1600-0714.2007.00617.x. PMID: 17944752.
Article
97. Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. 2010; The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett. 584:1659–1664. DOI: 10.1016/j.febslet.2010.01.050. PMID: 20122930.
Article
98. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. 2006; Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 351:820–824. DOI: 10.1016/j.bbrc.2006.10.128. PMID: 17097610.
Article
99. Yu CC, Hu FW, Yu CH, Chou MY. 2016; Targeting CD133 in the enhancement of chemosensitivity in oral squamous cell carcinoma-derived side population cancer stem cells. Head Neck. 38 Suppl 1:E231–E238. DOI: 10.1002/hed.23975. PMID: 25545959.
Article
100. Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT. 2008; The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 68:9703–9711. DOI: 10.1158/0008-5472.CAN-08-3084. PMID: 19047148. PMCID: PMC3072758.
Article
101. Kim K, Ihm H, Ro JY, Cho YM. 2011; High-level expression of stem cell marker CD133 in clear cell renal cell carcinoma with favorable prognosis. Oncol Lett. 2:1095–1100. DOI: 10.1158/1538-7445.AM2011-499. PMID: 22848273. PMCID: PMC3406563.
Article
102. Bi Y, Meng Y, Wu H, Cui Q, Luo Y, Xue X. 2016; Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: a ten-year follow-up and prognostic analysis. J Surg Oncol. 113:144–151. DOI: 10.1002/jso.24124. PMID: 26799258.
Article
103. Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. 2007; CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope. 117:455–460. DOI: 10.1097/01.mlg.0000251586.15299.35. PMID: 17334305.
Article
104. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF. 2008; Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 14:4085–4095. DOI: 10.1158/1078-0432.CCR-07-4404. PMID: 18593985.
Article
105. Oliveira LR, Castilho-Fernandes A, Oliveira-Costa JP, Soares FA, Zucoloto S, Ribeiro-Silva A. 2014; CD44+/CD133+ immunophenotype and matrix metalloproteinase-9: influence on prognosis in early-stage oral squamous cell carcinoma. Head Neck. 36:1718–1726. DOI: 10.1002/hed.23527. PMID: 24178866.
Article
106. An N, Cen B, Cai H, Song JH, Kraft A, Kang Y. 2016; Pim1 kinase regulates c-Kit gene translation. Exp Hematol Oncol. 5:31. DOI: 10.1186/s40164-016-0060-3. PMID: 28042518. PMCID: PMC5200960.
Article
107. Kimura Y, Ding B, Imai N, Nolan DJ, Butler JM, Rafii S. 2011; c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One. 6:e26918. DOI: 10.1371/journal.pone.0026918. PMID: 22046410. PMCID: PMC3202594.
Article
108. Zhan Q, Wang C, Ngai S. 2013; Ovarian cancer stem cells: a new target for cancer therapy. Biomed Res Int. 2013:916819. DOI: 10.1155/2013/916819. PMID: 23509802. PMCID: PMC3581273.
Article
109. Miettinen M, Lasota J. 2005; KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohis-tochem Mol Morphol. 13:205–220. DOI: 10.1097/01.pai.0000173054.83414.22. PMID: 16082245.
Article
110. Bolante-Cervantes R, Li S, Sahota A, Tischfield JA, Zwerdling T, Stambrook PJ. 1999; Pattern of localization of primitive hematopoietic cells in vivo using a novel mouse model. Exp Hematol. 27:1346–1352. DOI: 10.1016/S0301-472X(99)00064-8. PMID: 10428512.
Article
111. Hines SJ, Organ C, Kornstein MJ, Krystal GW. 1995; Coex-pression of the c-kit and stem cell factor genes in breast carcinomas. Cell Growth Differ. 6:769–779. PMID: 7545433.
112. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y. 1998; Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 279:577–580. DOI: 10.1126/science.279.5350.577. PMID: 9438854.
Article
113. Strohmeyer T, Peter S, Hartmann M, Munemitsu S, Ackermann R, Ullrich A, Slamon DJ. 1991; Expression of the hst-1 and c-kit protooncogenes in human testicular germ cell tumors. Cancer Res. 51:1811–1816. PMID: 1706218.
114. Jeng YM, Lin CY, Hsu HC. 2000; Expression of the c-kit protein is associated with certain subtypes of salivary gland carcinoma. Cancer Lett. 154:107–111. DOI: 10.1016/S0304-3835(00)00387-6. PMID: 10799746.
Article
115. Sekido Y, Obata Y, Ueda R, Hida T, Suyama M, Shimokata K, Ariyoshi Y, Takahashi T. 1991; Preferential expression of c-kit protooncogene transcripts in small cell lung cancer. Cancer Res. 51:2416–2419. PMID: 1707753.
116. Ongkeko WM, Altuna X, Weisman RA, Wang-Rodriguez J. 2005; Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol. 124:71–76. DOI: 10.1309/BTLN5WTMJ3PCNRRC. PMID: 15923166.
Article
117. Tsai LL, Yu CC, Lo JF, Sung WW, Lee H, Chen SL, Chou MY. 2012; Enhanced cisplatin resistance in oral-cancer stem-like cells is correlated with upregulation of excision-repair cross-complementation group 1. J Dent Sci. 7:111–117. DOI: 10.1016/j.jds.2012.03.006.
Article
118. Mărgăritescu C, Pirici D, Simionescu C, Stepan A. 2011; The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Rom J Morphol Embryol. 52(3 Suppl):985–993. PMID: 22119814.
119. Silva Galbiatti-Dias AL, Fernandes GMM, Castanhole-Nunes MMU, Hidalgo LF, Nascimento Filho CHV, Kawasaki-Oyama RS, Ferreira LAM, Biselli-Chicote PM, Pavarino ÉC, Goloni-Bertollo EM. 2018; Relationship between CD44high/CD133high/CD117high cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck cancer cell lines. Am J Cancer Res. 8:1633–1641. PMID: 30210931. PMCID: PMC6129494.
120. Barth PJ, Schenck zu Schweinsberg T, Ramaswamy A, Moll R. 2004; CD34+ fibrocytes, alpha-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch. 444:231–234. DOI: 10.1007/s00428-003-0965-1. PMID: 14758552.
Article
121. Hill RP, Marie-Egyptienne DT, Hedley DW. 2009; Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol. 19:106–111. DOI: 10.1016/j.semradonc.2008.12.002. PMID: 19249648.
Article
122. Kim WT, Ryu CJ. 2017; Cancer stem cell surface markers on normal stem cells. BMB Rep. 50:285–298. DOI: 10.5483/BMBRep.2017.50.6.039. PMID: 28270302. PMCID: PMC5498139.
Article
123. Gupta PB, Chaffer CL, Weinberg RA. 2009; Cancer stem cells: mirage or reality? Nat Med. 15:1010–1012. DOI: 10.1038/nm0909-1010. PMID: 19734877.
Article
124. Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, Tucker-Kellogg L, Virshup DM. 2017; Wnt proteins synergize to activate β-catenin signaling. J Cell Sci. 130:1532–1544. DOI: 10.1242/dev.154112. PMID: 28289266.
Article
125. Routledge D, Scholpp S. 2019; Mechanisms of intercellular Wnt transport. Development. 146:dev176073. DOI: 10.1242/dev.176073. PMID: 31092504.
Article
126. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ. 2012; Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia. 26:414–421. DOI: 10.1038/leu.2011.387. PMID: 22173215. PMCID: PMC3378318.
Article
127. Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, Lee HY, Nam JS. 2015; Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. DOI: 10.1158/0008-5472.CAN-14-2041. PMID: 25660951.
Article
128. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, Lee HY, Hong IS, Nam JS. 2015; Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci Rep. 5:12465. DOI: 10.1038/srep12465. PMID: 26202299. PMCID: PMC5378883.
Article
129. Gedaly R, Galuppo R, Daily MF, Shah M, Maynard E, Chen C, Zhang X, Esser KA, Cohen DA, Evers BM, Jiang J, Spear BT. 2014; Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One. 9:e99272. DOI: 10.1371/journal.pone.0099272. PMID: 24940873. PMCID: PMC4062395.
Article
130. Teng Y, Wang X, Wang Y, Ma D. 2010; Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun. 392:373–379. DOI: 10.1016/j.bbrc.2010.01.028. PMID: 20074550.
Article
131. Iwai S, Yonekawa A, Harada C, Hamada M, Katagiri W, Nakazawa M, Yura Y. 2010; Involvement of the Wnt-β-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol. 37:1095–1103. DOI: 10.3892/ijo_00000761. PMID: 20878057.
Article
132. Yang F, Zeng Q, Yu G, Li S, Wang CY. 2006; Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal. 18:679–687. DOI: 10.1016/j.cellsig.2005.06.015. PMID: 16084063.
Article
133. Warrier S, Bhuvanalakshmi G, Arfuso F, Rajan G, Millward M, Dharmarajan A. 2014; Cancer stem-like cells from head and neck cancers are chemosensitized by the Wnt antagonist, sFRP4, by inducing apoptosis, decreasing stemness, drug resistance and epithelial to mesenchymal transition. Cancer Gene Ther. 21:381–388. DOI: 10.1038/cgt.2014.42. PMID: 25104726.
Article
134. Lim YC, Kang HJ, Kim YS, Choi EC. 2012; All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur J Cancer. 48:3310–3318. DOI: 10.1016/j.ejca.2012.04.013. PMID: 22640830.
Article
135. Yin L, Velazquez OC, Liu ZJ. 2010; Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol. 80:690–701. DOI: 10.1016/j.bcp.2010.03.026. PMID: 20361945.
Article
136. Penton AL, Leonard LD, Spinner NB. 2012; Notch signaling in human development and disease. Semin Cell Dev Biol. 23:450–457. DOI: 10.1016/j.semcdb.2012.01.010. PMID: 22306179. PMCID: PMC3638987.
Article
137. Kovall RA, Gebelein B, Sprinzak D, Kopan R. 2017; The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell. 41:228–241. DOI: 10.1016/j.devcel.2017.04.001. PMID: 28486129. PMCID: PMC5492985.
Article
138. Aster JC, Pear WS, Blacklow SC. 2017; The varied roles of Notch in cancer. Annu Rev Pathol. 12:245–275. DOI: 10.1146/annurev-pathol-052016-100127. PMID: 27959635. PMCID: PMC5933931.
Article
139. Allenspach EJ, Maillard I, Aster JC, Pear WS. 2002; Notch signaling in cancer. Cancer Biol Ther. 1:466–476. DOI: 10.4161/cbt.1.5.159. PMID: 12496471.
Article
140. Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. 2018; Cancer cells exploit Notch signaling to redefine a supportive cytokine milieu. Front Immunol. 9:1823. DOI: 10.3389/fimmu.2018.01823. PMID: 30154786. PMCID: PMC6102368.
Article
141. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, Treviño L, Drummond JA, Muzny DM, Wu Y, Wood LD, Hruban RH, Westra WH, Koch WM, Califano JA, Gibbs RA, Sidransky D, Vogelstein B, Velculescu VE, Papadopoulos N, Wheeler DA, Kinzler KW, Myers JN. 2011; Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 333:1154–1157. DOI: 10.1126/science.1206923. PMID: 21798897. PMCID: PMC3162986.
Article
142. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortés ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareño C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR. 2011; The mutational landscape of head and neck squamous cell carcinoma. Science. 333:1157–1160. DOI: 10.1126/science.1208130. PMID: 21798893. PMCID: PMC3415217.
Article
143. Sun W, Gaykalova DA, Ochs MF, Mambo E, Arnaoutakis D, Liu Y, Loyo M, Agrawal N, Howard J, Li R, Ahn S, Fertig E, Sidransky D, Houghton J, Buddavarapu K, Sanford T, Choudhary A, Darden W, Adai A, Latham G, Bishop J, Sharma R, Westra WH, Hennessey P, Chung CH, Califano JA. 2014; Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74:1091–1104. DOI: 10.1158/0008-5472.CAN-13-1259. PMID: 24351288. PMCID: PMC3944644.
Article
144. Shrivastava S, Steele R, Sowadski M, Crawford SE, Varvares M, Ray RB. 2015; Identification of molecular signature of head and neck cancer stem-like cells. Sci Rep. 5:7819. DOI: 10.1038/srep07819. PMID: 25588898. PMCID: PMC4295111.
Article
145. Lee SH, Hong HS, Liu ZX, Kim RH, Kang MK, Park NH, Shin KH. 2012; TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem Biophys Res Commun. 424:58–64. DOI: 10.1016/j.bbrc.2012.06.065. PMID: 22728043. PMCID: PMC3488595.
Article
146. Zou B, Sun S, Qi X, Ji P. 2012; Aldehyde dehydrogenase activity is a cancer stem cell marker of tongue squamous cell carcinoma. Mol Med Rep. 5:1116–1120. DOI: 10.3892/mmr.2012.781. PMID: 22307065. PMCID: PMC3493091.
Article
147. Sasai N, Toriyama M, Kondo T. 2019; Hedgehog signal and genetic disorders. Front Genet. 10:1103. DOI: 10.3389/fgene.2019.01103. PMID: 31781166. PMCID: PMC6856222.
Article
148. Abramyan J. 2019; Hedgehog signaling and embryonic craniofacial disorders. J Dev Biol. 7:9. DOI: 10.3390/jdb7020009. PMID: 31022843. PMCID: PMC6631594.
Article
149. Nüsslein-Volhard C, Wieschaus E. 1980; Mutations affecting segment number and polarity in Drosophila. Nature. 287:795–801. DOI: 10.1038/287795a0. PMID: 6776413.
Article
150. Lee JJ, von Kessler DP, Parks S, Beachy PA. 1992; Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell. 71:33–50. DOI: 10.1016/0092-8674(92)90264-D. PMID: 1394430.
Article
151. Mohler J, Vani K. 1992; Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development. 115:957–971. DOI: 10.1242/dev.115.4.957. PMID: 1280560.
Article
152. Tabata T, Eaton S, Kornberg TB. 1992; The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6:2635–2645. DOI: 10.1101/gad.6.12b.2635. PMID: 1340474.
Article
153. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. 1993; Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 75:1417–1430. DOI: 10.1016/0092-8674(93)90627-3. PMID: 7916661.
Article
154. Krauss S, Concordet JP, Ingham PW. 1993; A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell. 75:1431–1444. DOI: 10.1016/0092-8674(93)90628-4. PMID: 8269519.
Article
155. Marigo V, Tabin CJ. 1996; Regulation of patched by sonic hedgehog in the developing neural tube. Proc Natl Acad Sci U S A. 93:9346–9351. DOI: 10.1073/pnas.93.18.9346. PMID: 8790332. PMCID: PMC38430.
Article
156. Robbins DJ, Fei DL, Riobo NA. 2012; The Hedgehog signal transduction network. Sci Signal. 5:re6. DOI: 10.1126/scisignal.2002906. PMID: 23074268. PMCID: PMC3705708.
Article
157. Kasper M, Jaks V, Fiaschi M, Toftgård R. 2009; Hedgehog signalling in breast cancer. Carcinogenesis. 30:903–911. DOI: 10.1093/carcin/bgp048. PMID: 19237605. PMCID: PMC2691147.
Article
158. Jagani Z, Dorsch M, Warmuth M. 2010; Hedgehog pathway activation in chronic myeloid leukemia. Cell Cycle. 9:3449–3456. DOI: 10.4161/cc.9.17.12945. PMID: 20928937.
Article
159. Wu C, Zhu X, Liu W, Ruan T, Tao K. 2017; Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther. 10:3249–3259. DOI: 10.2147/OTT.S139639. PMID: 28721076. PMCID: PMC5501640.
Article
160. Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu J, Kondo T. 2011; Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 102:1306–1312. DOI: 10.1111/j.1349-7006.2011.01943.x. PMID: 21453386.
Article
161. Abe Y, Tanaka N. 2016; The hedgehog signaling networks in lung cancer: the mechanisms and roles in tumor progression and implications for cancer therapy. Biomed Res Int. 2016:7969286. DOI: 10.1155/2016/7969286. PMID: 28105432. PMCID: PMC5220431.
Article
162. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA, Watkins DN, Matsui W. 2007; Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A. 104:4048–4053. DOI: 10.1073/pnas.0611682104. PMID: 17360475. PMCID: PMC1805487.
Article
163. Kelleher FC. 2011; Hedgehog signaling and therapeutics in pancreatic cancer. Carcinogenesis. 32:445–451. DOI: 10.1093/carcin/bgq280. PMID: 21186299.
Article
164. Takebe N, Harris PJ, Warren RQ, Ivy SP. 2011; Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 8:97–106. DOI: 10.1038/nrclinonc.2010.196. PMID: 21151206.
Article
165. Wang YF, Chang CJ, Lin CP, Chang SY, Chu PY, Tai SK, Li WY, Chao KS, Chen YJ. 2012; Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head Neck. 34:1556–1561. DOI: 10.1002/hed.21958. PMID: 22287313.
Article
166. Han Y. 2019; Analysis of the role of the Hippo pathway in cancer. J Transl Med. 17:116. DOI: 10.1186/s12967-019-1869-4. PMID: 30961610. PMCID: PMC6454697.
Article
167. Zhao C, Zeng C, Ye S, Dai X, He Q, Yang B, Zhu H. 2020; Yes-associated protein (YAP) and transcriptional coacti-vator with a PDZ-binding motif (TAZ): a nexus between hypoxia and cancer. Acta Pharm Sin B. 10:947–960. DOI: 10.1016/j.apsb.2019.12.010. PMID: 32642404. PMCID: PMC7332664.
Article
168. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL. 2010; The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24:1106–1118. DOI: 10.1101/gad.1903310. PMID: 20516196. PMCID: PMC2878649.
Article
169. Tamm C, Böwer N, Annerén C. 2011; Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci. 124(Pt 7):1136–1144. DOI: 10.1242/jcs.075796. PMID: 21385842.
Article
170. Segrelles C, Paramio JM, Lorz C. 2018; The transcriptional co-activator YAP: a new player in head and neck cancer. Oral Oncol. 86:25–32. DOI: 10.1016/j.oraloncology.2018.08.020. PMID: 30409308.
Article
171. Santos-de-Frutos K, Segrelles C, Lorz C. 2019; Hippo pathway and YAP signaling alterations in squamous cancer of the head and neck. J Clin Med. 8:2131. DOI: 10.3390/jcm8122131. PMID: 31817001. PMCID: PMC6947155.
Article
172. Eun YG, Lee D, Lee YC, Sohn BH, Kim EH, Yim SY, Kwon KH, Lee JS. 2017; Clinical significance of YAP1 activation in head and neck squamous cell carcinoma. Oncotarget. 8:111130–111143. DOI: 10.18632/oncotarget.22666. PMID: 29340043. PMCID: PMC5762311.
Article
173. Hiemer SE, Zhang L, Kartha VK, Packer TS, Almershed M, Noonan V, Kukuruzinska M, Bais MV, Monti S, Varelas X. 2015; A YAP/TAZ-regulated molecular signature is associated with oral squamous cell carcinoma. Mol Cancer Res. 13:957–968. DOI: 10.1158/1541-7786.MCR-14-0580. PMID: 25794680. PMCID: PMC4470857.
Article
174. Omori H, Nishio M, Masuda M, Miyachi Y, Ueda F, Nakano T, Sato K, Mimori K, Taguchi K, Hikasa H, Nishina H, Tashiro H, Kiyono T, Mak TW, Nakao K, Nakagawa T, Maehama T, Suzuki A. 2020; YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. Sci Adv. 6:eaay3324. DOI: 10.1126/sciadv.aay3324. PMID: 32206709. PMCID: PMC7080500.
Article
175. Li J, Li Z, Wu Y, Wang Y, Wang D, Zhang W, Yuan H, Ye J, Song X, Yang J, Jiang H, Cheng J. 2019; The Hippo effector TAZ promotes cancer stemness by transcriptional activation of SOX2 in head neck squamous cell carcinoma. Cell Death Dis. 10:603. DOI: 10.1038/s41419-019-1838-0. PMID: 31399556. PMCID: PMC6689034.
Article
176. Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D, Chellappan S. 2015; YAP1 regulates OCT4 activity and SOX2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells. 33:1705–1718. DOI: 10.1002/stem.1993. PMID: 25754111. PMCID: PMC4441573.
Article
177. Sayed SI, Dwivedi RC, Katna R, Garg A, Pathak KA, Nutting CM, Rhys-Evans P, Harrington KJ, Kazi R. 2011; Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer. Oral Oncol. 47:237–243. DOI: 10.1016/j.oraloncology.2011.02.009. PMID: 21382740.
Article
178. Forastiere A, Koch W, Trotti A, Sidransky D. 2001; Head and neck cancer. N Engl J Med. 345:1890–1900. DOI: 10.1056/NEJMra001375. PMID: 11756581.
Article
179. Chen YW, Chen KH, Huang PI, Chen YC, Chiou GY, Lo WL, Tseng LM, Hsu HS, Chang KW, Chiou SH. 2010; Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma--derived CD44(+)ALDH1(+) cells. Mol Cancer Ther. 9:2879–2892. DOI: 10.1158/1535-7163.MCT-10-0504. PMID: 21062915.
Article
180. Shakib K, Schrattenholz A, Soskic V. 2011; Stem cells in head and neck squamous cell carcinoma. Br J Oral Maxillofac Surg. 49:503–506. DOI: 10.1016/j.bjoms.2010.07.016. PMID: 20832149.
Article
181. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M. 2008; Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med. 14:450–460. DOI: 10.1016/j.molmed.2008.08.003. PMID: 18775674.
Article
182. Yang YM, Chang JW. 2008; Current status and issues in cancer stem cell study. Cancer Invest. 26:741–755. DOI: 10.1080/07357900801901856. PMID: 18608212.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr