Anat Cell Biol.  2021 Jun;54(2):165-177. 10.5115/acb.20.290.

Blood-brain barrier dysfunction in ischemic stroke and diabetes: the underlying link, mechanisms and future possible therapeutic targets

Affiliations
  • 1Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
  • 2Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
  • 3Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand

Abstract

Ischemic stroke caused by occlusion of cerebral artery is responsible for the majority of stroke that increases the morbidity and mortality worldwide. Diabetes mellitus (DM) is a crucial risk factor for ischemic stroke. Prolonged DM causes various microvascular and macrovascular changes, and blood-brain barrier (BBB) permeability that facilitates inflammatory response following stroke. In the acute phase following stroke, BBB disruption has been considered the initial step that induces neurological deficit and functional disabilities. Stroke outcomes are significantly worse among DM. In this article, we review stroke with diabetes-induce BBB damage, as well as underlying mechanism and possible therapeutic targets for stroke with diabetes.

Keyword

Blood-brain barrier; Diabetes mellitus; Hyperglycemia; Inflammation; Ischemic stroke

Figure

  • Fig. 1 Structure and functionality of the BBB. (A) Structure of BBB is composed of ECs, BM, astrocyte end feet and pericytes. (B) Tight junctions on ECs (C) Transporter of BBB for molecular traffic across the BBB. BBB, blood-brain barrier; BM, basement membrane; ECs, endothelial cells; Glut-1, glucose transporter; ZO-1, zona occuldens-1.

  • Fig. 2 Pathological mechanism of inflammation induced by hyperglycemia. Glut-1, glucose transporter; NF-κB, nuclear factor-kappa B; ROS, reactive oxygen species.

  • Fig. 3 Neuroinflammatory mechanism involved in aggravating BBB damage in stoke with diabetic. BBB, blood-brain barrier.


Cited by  1 articles

The in vitro analysis of migration and polarity of blastema cells in the extracellular matrix derived from bovine mesenteric in the presence of fibronectin
Kamelia Kohannezhad, Soroush Norouzi, Maryam Tafazoli, Safoura Soleymani, Nasser Mahdavi Shahri, Amin Tavassoli
Anat Cell Biol. 2022;55(2):229-238.    doi: 10.5115/acb.21.233.


Reference

References

1. Goldstein LB, Adams R, Becker K, Furberg CD, Gorelick PB, Hademenos G, Hill M, Howard G, Howard VJ, Jacobs B, Levine SR, Mosca L, Sacco RL, Sherman DG, Wolf PA, del Zoppo GJ. 2001; Primary prevention of ischemic stroke: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 32:280–99. DOI: 10.1161/01.STR.32.1.280. PMID: 11136952.
2. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC. 2001; Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke. 32:2426–32. DOI: 10.1161/hs1001.096194. PMID: 11588337.
3. Mankovsky BN, Ziegler D. 2004; Stroke in patients with diabetes mellitus. Diabetes Metab Res Rev. 20:268–87. DOI: 10.1002/dmrr.490. PMID: 15250030.
Article
4. Megherbi SE, Milan C, Minier D, Couvreur G, Osseby GV, Tilling K, Di Carlo A, Inzitari D, Wolfe CD, Moreau T, Giroud M. European BIOMED Study of Stroke Care Group. 2003; Association between diabetes and stroke subtype on survival and functional outcome 3 months after stroke: data from the European BIOMED Stroke Project. Stroke. 34:688–94. DOI: 10.1161/01.STR.0000057975.15221.40. PMID: 12624292.
Article
5. Yong M, Kaste M. 2008; Dynamic of hyperglycemia as a predictor of stroke outcome in the ECASS-II trial. Stroke. 39:2749–55. DOI: 10.1161/STROKEAHA.108.514307. PMID: 18703813.
Article
6. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. 2007; Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 50:202–11. DOI: 10.1007/s00125-006-0485-z. PMID: 17143608.
Article
7. Horani MH, Mooradian AD. 2003; Effect of diabetes on the blood brain barrier. Curr Pharm Des. 9:833–40. DOI: 10.2174/1381612033455314. PMID: 12678883.
Article
8. Serlin Y, Levy J, Shalev H. 2011; Vascular pathology and blood-brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovasc Psychiatry Neurol. 2011:609202. DOI: 10.1155/2011/609202. PMID: 21350721. PMCID: PMC3042607.
Article
9. Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR. 1999; Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 72:238–47. DOI: 10.1046/j.1471-4159.1999.0720238.x. PMID: 9886075.
10. Abdullahi W, Tripathi D, Ronaldson PT. 2018; Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 315:C343–56. DOI: 10.1152/ajpcell.00095.2018. PMID: 29949404. PMCID: PMC6171039.
Article
11. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. 2010; Structure and function of the blood-brain barrier. Neurobiol Dis. 37:13–25. DOI: 10.1016/j.nbd.2009.07.030. PMID: 19664713.
Article
12. Keaney J, Campbell M. 2015; The dynamic blood-brain barrier. FEBS J. 282:4067–79. DOI: 10.1111/febs.13412. PMID: 26277326.
Article
13. Li AC, Thompson RP. 2003; Basement membrane components. J Clin Pathol. 56:885–7. DOI: 10.1136/jcp.56.12.885. PMID: 14645343. PMCID: PMC1770144.
Article
14. Huber JD, Egleton RD, Davis TP. 2001; Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24:719–25. DOI: 10.1016/S0166-2236(00)02004-X. PMID: 11718877.
Article
15. Obermeier B, Verma A, Ransohoff RM. 2016; The blood-brain barrier. Handb Clin Neurol. 133:39–59. DOI: 10.1016/B978-0-444-63432-0.00003-7. PMID: 27112670.
Article
16. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G. 2002; Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol. 168:1940–9. DOI: 10.4049/jimmunol.168.4.1940. PMID: 11823530.
Article
17. Gee JR, Keller JN. 2005; Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol. 37:1145–50. DOI: 10.1016/j.biocel.2004.10.004. PMID: 15778078.
Article
18. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. 2010; Pericytes regulate the blood-brain barrier. Nature. 468:557–61. DOI: 10.1038/nature09522. PMID: 20944627.
Article
19. Daneman R, Zhou L, Kebede AA, Barres BA. 2010; Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 468:562–6. DOI: 10.1038/nature09513. PMID: 20944625. PMCID: PMC3241506.
Article
20. Daneman R, Prat A. 2015; The blood-brain barrier. Cold Spring Harb Perspect Biol. 7:a020412. DOI: 10.1101/cshperspect.a020412. PMID: 25561720. PMCID: PMC4292164.
Article
21. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. 2003; Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 161:653–60. DOI: 10.1083/jcb.200302070. PMID: 12743111. PMCID: PMC2172943.
Article
22. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E. 2008; Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 183:409–17. DOI: 10.1083/jcb.200806024. PMID: 18955553. PMCID: PMC2575783.
23. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. 2000; Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 11:4131–42. DOI: 10.1091/mbc.11.12.4131. PMID: 11102513. PMCID: PMC15062.
Article
24. Van Itallie CM, Anderson JM. 2013; Claudin interactions in and out of the tight junction. Tissue Barriers. 1:e25247. DOI: 10.4161/tisb.25247. PMID: 24665401. PMCID: PMC3875638.
Article
25. Löscher W, Potschka H. 2005; Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2:86–98. DOI: 10.1602/neurorx.2.1.86. PMID: 15717060. PMCID: PMC539326.
Article
26. Erdő F, Krajcsi P. 2019; Age-related functional and expressional changes in efflux pathways at the blood-brain barrier. Front Aging Neurosci. 11:196. DOI: 10.3389/fnagi.2019.00196. PMID: 31417399. PMCID: PMC6682691.
Article
27. Shah K, Desilva S, Abbruscato T. 2012; The role of glucose transporters in brain disease: diabetes and Alzheimer's disease. Int J Mol Sci. 13:12629–55. DOI: 10.3390/ijms131012629. PMID: 23202918. PMCID: PMC3497292.
Article
28. Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R. 2001; Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol. 154:635–41. DOI: 10.1093/aje/154.7.635. PMID: 11581097.
Article
29. Prasad S, Sajja RK, Naik P, Cucullo L. 2014; Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil. 2:125. DOI: 10.4172/2329-6887.1000125. PMID: 25632404. PMCID: PMC4306190.
30. Chen M, Zheng H, Xu M, Zhao L, Zhang Q, Song J, Zhao Z, Lu S, Weng Q, Wu X, Yang W, Fan X, Gao H, Ji J. 2019; Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation. Biosci Rep. 39:BSR20181379. DOI: 10.1042/BSR20181379. PMID: 30918104. PMCID: PMC6481239.
Article
31. Jurysta C, Nicaise C, Giroix MH, Cetik S, Malaisse WJ, Sener A. 2013; Comparison of GLUT1, GLUT2, GLUT4 and SGLT1 mRNA expression in the salivary glands and six other organs of control, streptozotocin-induced and Goto-Kakizaki diabetic rats. Cell Physiol Biochem. 31:37–43. DOI: 10.1159/000343347. PMID: 23343648.
Article
32. Younessi P, Yoonessi A. 2011; Advanced glycation end-products and their receptor-mediated roles: inflammation and oxidative stress. Iran J Med Sci. 36:154–66. PMID: 23358382. PMCID: PMC3556769.
33. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. 2004; Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 53:2079–86. DOI: 10.2337/diabetes.53.8.2079. PMID: 15277389.
Article
34. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. 2018; Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 9:119. DOI: 10.1038/s41419-017-0135-z. PMID: 29371661. PMCID: PMC5833737.
Article
35. World Health Organization (WHO). 2008. The Global burden of disease: 2004 update. World Health Organization;Geneva:
36. Tun NN, Arunagirinathan G, Munshi SK, Pappachan JM. 2017; Diabetes mellitus and stroke: a clinical update. World J Diabetes. 8:235–48. DOI: 10.4239/wjd.v8.i6.235. PMID: 28694925. PMCID: PMC5483423.
Article
37. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. 1999; Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 842:92–100. DOI: 10.1016/S0006-8993(99)01843-0. PMID: 10526099.
Article
38. Fukuda AM, Badaut J. 2012; Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 9:279. DOI: 10.1186/1742-2094-9-279. PMID: 23270503. PMCID: PMC3552817.
Article
39. Candelario-Jalil E, Yang Y, Rosenberg GA. 2009; Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 158:983–94. DOI: 10.1016/j.neuroscience.2008.06.025. PMID: 18621108. PMCID: PMC3584171.
Article
40. Chodobski A, Zink BJ, Szmydynger-Chodobska J. 2011; Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2:492–516. DOI: 10.1007/s12975-011-0125-x. PMID: 22299022. PMCID: PMC3268209.
Article
41. Uyttenboogaart M, Koch MW, Stewart RE, Vroomen PC, Luijckx GJ, De Keyser J. 2007; Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke. Brain. 130(Pt 6):1626–30. DOI: 10.1093/brain/awm087. PMID: 17525141.
Article
42. Ramasamy R, Yan SF, Schmidt AM. 2011; Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci. 1243:88–102. DOI: 10.1111/j.1749-6632.2011.06320.x. PMID: 22211895. PMCID: PMC4501013.
Article
43. Song EC, Chu K, Jeong SW, Jung KH, Kim SH, Kim M, Yoon BW. 2003; Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke. 34:2215–20. DOI: 10.1161/01.STR.0000088060.83709.2C. PMID: 12907821.
Article
44. Bruno A, Levine SR, Frankel MR, Brott TG, Lin Y, Tilley BC, Lyden PD, Broderick JP, Kwiatkowski TG, Fineberg SE. NINDS rt-PA Stroke Study Group. 2002; Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology. 59:669–74. DOI: 10.1212/WNL.59.5.669. PMID: 12221155.
Article
45. Barreras A, Gurk-Turner C. 2003; Angiotensin II receptor blockers. Proc (Bayl Univ Med Cent). 16:123–6. DOI: 10.1080/08998280.2003.11927893. PMID: 16278727. PMCID: PMC1200815.
Article
46. O'Keefe JH, Wetzel M, Moe RR, Bronsnahan K, Lavie CJ. 2001; Should an angiotensin-converting enzyme inhibitor be standard therapy for patients with atherosclerotic disease? J Am Coll Cardiol. 37:1–8. DOI: 10.1016/S0735-1097(00)01044-5. PMID: 11153722.
47. Schiffrin EL, Park JB, Intengan HD, Touyz RM. 2000; Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation. 101:1653–9. DOI: 10.1161/01.CIR.101.14.1653. PMID: 10758046.
Article
48. Ido A, Hasebe N, Takeuchi T, Kikuchi K. 2003; Effects of temocapril and olmesartan on myocardial sympathetic nervous activity and fatty acid metabolism in rats with chronic beta-adrenergic stimulation. J Cardiovasc Pharmacol. 41 Suppl 1:S133–7. PMID: 12688410.
49. Yamaguchi K, Ura N, Murakami H, Togashi N, Hyakukoku M, Higashiura K, Shimamoto K. 2005; Olmesartan ameliorates insulin sensitivity by modulating tumor necrosis factor-alpha and cyclic AMP in skeletal muscle. Hypertens Res. 28:773–8. DOI: 10.1291/hypres.28.773. PMID: 16419651.
Article
50. Matsumura T, Kinoshita H, Ishii N, Fukuda K, Motoshima H, Senokuchi T, Taketa K, Kawasaki S, Nishimaki-Mogami T, Kawada T, Nishikawa T, Araki E. 2011; Telmisartan exerts antiatherosclerotic effects by activating peroxisome proliferator-activated receptor-γ in macrophages. Arterioscler Thromb Vasc Biol. 31:1268–75. DOI: 10.1161/ATVBAHA.110.222067. PMID: 21474824.
Article
51. Tan XY, Hu JB. 2016; ACEIs/ARBs for the prevention of type 2 diabetes in patients with cardiovascular diseases: a systematic review and meta-analysis. Int J Clin Exp Med. 9:7624–37.
52. Kuwashiro T, Kamouchi M, Ago T, Hata J, Sugimori H, Kitazono T. 2012; The factors associated with a functional outcome after ischemic stroke in diabetic patients: the Fukuoka Stroke Registry. J Neurol Sci. 313:110–4. DOI: 10.1016/j.jns.2011.09.012. PMID: 21992812.
Article
53. Baird TA, Parsons MW, Phan T, Butcher KS, Desmond PM, Tress BM, Colman PG, Chambers BR, Davis SM. 2003; Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 34:2208–14. DOI: 10.1161/01.STR.0000085087.41330.FF. PMID: 12893952.
Article
54. Fuentes B, Castillo J, San José B, Leira R, Serena J, Vivancos J, Dávalos A, Nuñez AG, Egido J, Díez-Tejedor E. Stroke Project of the Cerebrovascular Diseases Study Group, Spanish Society of Neurology. 2009; The prognostic value of capillary glucose levels in acute stroke: the GLycemia in acute stroke (GLIAS) study. Stroke. 40:562–8. DOI: 10.1161/STROKEAHA.108.519926. PMID: 19095970.
55. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassaï B, Erpeldinger S, Wright JM, Gueyffier F, Cornu C. 2011; Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 343:d4169. DOI: 10.1136/bmj.d4169. PMID: 21791495. PMCID: PMC3144314.
Article
56. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD. 2009; Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 360:129–39. DOI: 10.1056/NEJMoa0808431. PMID: 19092145.
Article
57. Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, Grimm RH Jr, Byington RP, Rosenberg YD, Friedewald WT. 2011; Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 364:818–28. DOI: 10.1056/NEJMoa1006524. PMID: 21366473. PMCID: PMC4083508.
Article
58. Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal TP, Hemmingsen C, Wetterslev J. 2013; Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. (11):CD008143. DOI: 10.1002/14651858.CD008143.pub3. PMID: 26222248.
Article
59. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. 2008; Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 358:2560–72. DOI: 10.1056/NEJMoa0802987. PMID: 18539916.
60. Bonnet F, Scheen AJ. 2017; Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. Diabetes Metab. 43:299–313. DOI: 10.1016/j.diabet.2017.04.004. PMID: 28522196.
Article
61. Castilla-Guerra L, Fernandez-Moreno MDC, Leon-Jimenez D, Carmona-Nimo E. 2018; Antidiabetic drugs and stroke risk. Current evidence. Eur J Intern Med. 48:1–5. DOI: 10.1016/j.ejim.2017.09.019. PMID: 28939005.
Article
62. Lee JC, Won MH. 2014; Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol. 47:149–56. DOI: 10.5115/acb.2014.47.3.149. PMID: 25276473. PMCID: PMC4178189.
Article
63. Li H, Luo Y, Yang P, Liu J. 2019; Hydrogen as a complementary therapy against ischemic stroke: a review of the evidence. J Neurol Sci. 396:240–6. DOI: 10.1016/j.jns.2018.11.004. PMID: 30529801.
Article
64. Shinohara Y, Saito I, Kobayashi S, Uchiyama S. 2009; Edaravone (radical scavenger) versus sodium ozagrel (antiplatelet agent) in acute noncardioembolic ischemic stroke (EDO trial). Cerebrovasc Dis. 27:485–92. DOI: 10.1159/000210190. PMID: 19321945.
Article
65. Hu Q, Manaenko A, Bian H, Guo Z, Huang JL, Guo ZN, Yang P, Tang J, Zhang JH. 2017; Hyperbaric oxygen reduces infarction volume and hemorrhagic transformation through ATP/NAD+/Sirt1 pathway in hyperglycemic middle cerebral artery occlusion rats. Stroke. 48:1655–64. DOI: 10.1161/STROKEAHA.116.015753. PMID: 28495827. PMCID: PMC5489129.
66. Ning R, Venkat P, Chopp M, Zacharek A, Yan T, Cui X, Seyfried D, Chen J. 2017; D-4F increases microRNA-124a and reduces neuroinflammation in diabetic stroke rats. Oncotarget. 8:95481–94. DOI: 10.18632/oncotarget.20751. PMID: 29221142. PMCID: PMC5707036.
Article
67. Iwasawa E, Ichijo M, Ishibashi S, Yokota T. 2016; Acute development of collateral circulation and therapeutic prospects in ischemic stroke. Neural Regen Res. 11:368–71. DOI: 10.4103/1673-5374.179033. PMID: 27127459. PMCID: PMC4828985.
Article
68. Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, Teng L. 2017; Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One. 12:e0180476. DOI: 10.1371/journal.pone.0180476. PMID: 28662169. PMCID: PMC5491251.
Article
69. Hong P, Gu RN, Li FX, Xiong XX, Liang WB, You ZJ, Zhang HF. 2019; NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation. 16:121. DOI: 10.1186/s12974-019-1498-0. PMID: 31174550. PMCID: PMC6554993.
Article
70. Hu J, Liu B, Zhao Q, Jin P, Hua F, Zhang Z, Liu Y, Zan K, Cui G, Ye X. 2016; Bone marrow stromal cells inhibits HMGB1-mediated inflammation after stroke in type 2 diabetic rats. Neuroscience. 324:11–9. DOI: 10.1016/j.neuroscience.2016.02.058. PMID: 26946264.
Article
71. Xiang J, Hu J, Shen T, Liu B, Hua F, Zan K, Zu J, Cui G, Ye X. 2017; Bone marrow mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke in type 2 diabetic rats. Neurosci Lett. 644:62–6. DOI: 10.1016/j.neulet.2017.02.040. PMID: 28219791.
Article
72. Venkat P, Yan T, Chopp M, Zacharek A, Ning R, Van Slyke P, Dumont D, Landschoot-Ward J, Liang L, Chen J. 2018; Angiopoietin-1 mimetic peptide promotes neuroprotection after stroke in type 1 diabetic rats. Cell Transplant. 27:1744–52. DOI: 10.1177/0963689718791568. PMID: 30124060. PMCID: PMC6300775.
Article
73. Nakagawa S, Aruga J. 2020; Sphingosine 1-phosphate signaling is involved in impaired blood-brain barrier function in ischemia-reperfusion injury. Mol Neurobiol. 57:1594–606. DOI: 10.1007/s12035-019-01844-x. PMID: 31802363.
Article
74. Sanchez T. 2016; Sphingosine-1-phosphate signaling in endothelial disorders. Curr Atheroscler Rep. 18:31. DOI: 10.1007/s11883-016-0586-1. PMID: 27115142.
Article
75. Li YJ, Shi SX, Liu Q, Shi FD, Gonzales RJ. 2020; Targeted role for sphingosine-1-phosphate receptor 1 in cerebrovascular integrity and inflammation during acute ischemic stroke. Neurosci Lett. 735:135160. DOI: 10.1016/j.neulet.2020.135160. PMID: 32561451.
Article
76. Kurano M, Tsukamoto K, Shimizu T, Kassai H, Nakao K, Aiba A, Hara M, Yatomi Y. 2020; Protection against insulin resistance by apolipoprotein M/sphingosine-1-phosphate. Diabetes. 69:867–81. DOI: 10.2337/db19-0811. PMID: 31915150.
Article
77. Li S, Wang N, Guo X, Li J, Zhang T, Ren G, Li D. 2018; Fibroblast growth factor 21 regulates glucose metabolism in part by reducing renal glucose reabsorption. Biomed Pharmacother. 108:355–66. DOI: 10.1016/j.biopha.2018.09.078. PMID: 30227329.
Article
78. Tezze C, Romanello V, Sandri M. 2019; FGF21 as modulator of metabolism in health and disease. Front Physiol. 10:419. DOI: 10.3389/fphys.2019.00419. PMID: 31057418. PMCID: PMC6478891.
Article
79. Woo YC, Xu A, Wang Y, Lam KS. 2013; Fibroblast growth factor 21 as an emerging metabolic regulator: clinical perspectives. Clin Endocrinol (Oxf). 78:489–96. DOI: 10.1111/cen.12095. PMID: 23134073.
Article
80. Wang D, Liu F, Zhu L, Lin P, Han F, Wang X, Tan X, Lin L, Xiong Y. 2020; FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammation. 17:257. DOI: 10.1186/s12974-020-01921-2. PMID: 32867781. PMCID: PMC7457364.
Article
81. Jiang Y, Lin L, Liu N, Wang Q, Yuan J, Li Y, Chung KK, Guo S, Yu Z, Wang X. 2020; FGF21 protects against aggravated blood-brain barrier disruption after ischemic focal stroke in diabetic db/db male mice via cerebrovascular PPARγ activation. Int J Mol Sci. 21:824. DOI: 10.3390/ijms21030824. PMID: 32012810. PMCID: PMC7037567.
Article
82. Zhong C, Yang J, Xu T, Xu T, Peng Y, Wang A, Wang J, Peng H, Li Q, Ju Z, Geng D, Zhang Y, He J. 2017; Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology. 89:805–12. DOI: 10.1212/WNL.0000000000004257. PMID: 28747453. PMCID: PMC5580861.
Article
83. Darsalia V, Hua S, Larsson M, Mallard C, Nathanson D, Nyström T, Sjöholm Å, Johansson ME, Patrone C. 2014; Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One. 9:e103114. DOI: 10.1371/journal.pone.0103114. PMID: 25101679. PMCID: PMC4125154.
Article
84. Chen X, Jiang H. 2019; Tau as a potential therapeutic target for ischemic stroke. Aging (Albany NY). 11:12827–43. DOI: 10.18632/aging.102547. PMID: 31841442. PMCID: PMC6949092.
Article
85. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI. 2017; Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–30. DOI: 10.1038/mp.2017.171. PMID: 28886009.
Article
86. Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A, Chua SW, van der Hoven J, Lee WS, Müller J, Parmar J, Jonquieres GV, Stefen H, Guccione E, Fath T, Housley GD, Klugmann M, Ke YD, Ittner LM. 2017; Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun. 8:473. DOI: 10.1038/s41467-017-00618-0. PMID: 28883427. PMCID: PMC5589746.
Article
87. Raz L, Bhaskar K, Weaver J, Marini S, Zhang Q, Thompson JF, Espinoza C, Iqbal S, Maphis NM, Weston L, Sillerud LO, Caprihan A, Pesko JC, Erhardt EB, Rosenberg GA. 2019; Hypoxia promotes tau hyperphosphorylation with associated neuropathology in vascular dysfunction. Neurobiol Dis. 126:124–36. DOI: 10.1016/j.nbd.2018.07.009. PMID: 30010004. PMCID: PMC6347559.
Article
88. Zhang T, Pan BS, Sun GC, Sun X, Sun FY. 2010; Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain. Neurochem Int. 56:955–61. DOI: 10.1016/j.neuint.2010.04.003. PMID: 20398714.
Article
89. Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, Blennow K. 2001; Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 297:187–90. DOI: 10.1016/S0304-3940(00)01697-9.
Article
90. De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, Guldolf K, Zetterberg H, Blennow K, Engelborghs S, Vanmechelen E. 2017; Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol. 17:170. DOI: 10.1186/s12883-017-0945-8. PMID: 28854881. PMCID: PMC5577791.
Article
91. Xia M, Ye Z, Shi Y, Zhou L, Hua Y. 2018; Curcumin improves diabetes mellitus-associated cerebral infarction by increasing the expression of GLUT1 and GLUT3. Mol Med Rep. 17:1963–9. DOI: 10.3892/mmr.2017.8085.
Article
92. Kuhad A, Chopra K. 2008; Effect of sesamol on diabetes-associated cognitive decline in rats. Exp Brain Res. 185:411–20. DOI: 10.1007/s00221-007-1166-y. PMID: 17955223.
Article
93. Zhang L, Kan ZC, Zhang XL, Fang H, Jiang WL. 2014; 8-O-acetyl shanzhiside methylester attenuates cerebral ischaemia/reperfusion injury through an anti-inflammatory mechanism in diabetic rats. Basic Clin Pharmacol Toxicol. 115:481–7. DOI: 10.1111/bcpt.12266. PMID: 24823762.
Article
94. Luan H, Kan Z, Xu Y, Lv C, Jiang W. 2013; Rosmarinic acid protects against experimental diabetes with cerebral ischemia: relation to inflammation response. J Neuroinflammation. 10:28. DOI: 10.1186/1742-2094-10-28. PMID: 23414442. PMCID: PMC3614882.
Article
95. Kim JH, Lee NS, Jeong YG, Lee JH, Kim EJ, Han SY. 2012; Protective efficacy of an Ecklonia cava extract used to treat transient focal ischemia of the rat brain. Anat Cell Biol. 45:103–13. DOI: 10.5115/acb.2012.45.2.103. PMID: 22822465. PMCID: PMC3398172.
96. Yoon JY, Choi H, Jun HS. 2017; The effect of phloroglucinol, a component of Ecklonia cava extract, on hepatic glucose production. Mar Drugs. 15:106. DOI: 10.3390/md15040106. PMID: 28379184. PMCID: PMC5408252.
Article
Full Text Links
  • ACB
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr