Int J Stem Cells.  2021 May;14(2):127-137. 10.15283/ijsc20143.

Vascularized Organoids: A More Complete Model

Affiliations
  • 1Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China

Abstract

As an emerging research model in vitro, organoids have achieved major progress in recapitulating morphological aspects of organs and personalized precision therapy. Various organoids have been currently constructed in vitro (e.g., brain, heart, liver, and gastrointestinal). Though there are prominent advantages on microstructures and partial functions, most of them have been encountering a frustrating challenge that stromal components (e.g., blood vessels) are in short supplement, which has imposed the main dilemma on the application of such model ex vivo. As advanced technologies, co-culturing pluripotent stem cells, mesenchymal stem cells, with endothelial cells on 3D substrate matrix, are leaping forward, a novel model of an organoid with vascularization is formed. The mentioned contribute to the construction of the functional organoids derived from corresponding tissues, making them more reliable in stem cell research and clinical medicine. The present study overall summarizes progress of the evolution, applications and prospects of vascularized organoids.

Keyword

Vascular organoids; Vascular organoids; Pluripotent stem cells; Pluripotent stem cells; Translational medicine; Translational medicine; Applications; Applications

Figure

  • Fig. 1 Organoids have been established of different systems.

  • Fig. 2 The procedures of vascular organoids. Co-culturing with embryonic or adult stem cells, endothelial cells and mesenchymal cells, vascular organoids are generated after transplantation (top); On some occasions where there are urgent for the vascular networks, it can be constituded well ex vivo following the steps (medium); As for diseases, blood vessels organoids are masterpieces, in addition to some cytokines and small molecules to form the stem cells niche, it can be generated (bottom).

  • Fig. 3 The application prospects of vascular organoids.


Reference

References

1. Weiss P, Taylor AC. 1960; Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc Natl Acad Sci U S A. 46:1177–1185. DOI: 10.1073/pnas.46.9.1177. PMID: 16590731. PMCID: PMC223021.
Article
2. Cherry AB, Daley GQ. 2012; Reprogramming cellular identity for regenerative medicine. Cell. 148:1110–1122. DOI: 10.1016/j.cell.2012.02.031. PMID: 22424223. PMCID: PMC3354575.
Article
3. Lancaster MA, Knoblich JA. 2014; Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 345:1247125. DOI: 10.1126/science.1247125. PMID: 25035496.
Article
4. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S. 2010; Inductive angiocrine signals from sinusoidal endothelium are required for liver regene-ration. Nature. 468:310–315. DOI: 10.1038/nature09493. PMID: 21068842. PMCID: PMC3058628.
Article
5. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D'Amore PA, Langer R. 2005; Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 23:879–884. DOI: 10.1038/nbt1109. PMID: 15965465.
Article
6. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. 2011; Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472:51–56. DOI: 10.1038/nature09941. PMID: 21475194.
Article
7. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. 2013; Cerebral organoids model human brain development and microcephaly. Nature. 501:373–379. DOI: 10.1038/nature12517. PMID: 23995685. PMCID: PMC3817409.
Article
8. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. 2015; Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10:537–550. DOI: 10.1016/j.celrep.2014.12.051. PMID: 25640179.
Article
9. Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M, Sasai Y. 2015; Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telence-phalic tissue. Nat Commun. 6:8896. DOI: 10.1038/ncomms9896. PMID: 26573335. PMCID: PMC4660208.
Article
10. Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, Ratjen F, Ellis J, Rossant J. 2012; Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol. 30:876–882. DOI: 10.1038/nbt.2328. PMID: 22922672. PMCID: PMC3994104.
Article
11. Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. 2015; In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 4:e05098. DOI: 10.7554/eLife.05098. PMID: 25803487. PMCID: PMC4370217.
Article
12. Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, Combettes L, Weber A, Corlu A, Dubart-Kupperschmitt A. 2014; Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology. 60:700–714. DOI: 10.1002/hep.27165. PMID: 24715669. PMCID: PMC4315871.
Article
13. Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Kamath BM, Ghanekar A. 2015; Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 33:853–861. DOI: 10.1038/nbt.3294. PMID: 26167630.
Article
14. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. 2009; Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. DOI: 10.1038/nature07935. PMID: 19329995.
Article
15. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. 2011; The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 53:604–617. DOI: 10.1002/hep.24067. PMID: 21274881.
Article
16. Quint C, Arief M, Muto A, Dardik A, Niklason LE. 2012; Allogeneic human tissue-engineered blood vessel. J Vasc Surg. 55:790–798. DOI: 10.1016/j.jvs.2011.07.098. PMID: 22056286. PMCID: PMC3505682.
Article
17. Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S. 2013; Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A. 110:12601–12606. DOI: 10.1073/pnas.1306562110. PMID: 23858432. PMCID: PMC3732921.
Article
18. Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS, Batista A, Buecker C, Schäfer R, Han X, Au P, Scadden DT, Duda DG, Fukumura D, Jain RK. 2013; Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 110:12774–12779. DOI: 10.1073/pnas.1310675110. PMID: 23861493. PMCID: PMC3732948.
Article
19. Chan XY, Black R, Dickerman K, Federico J, Lévesque M, Mumm J, Gerecht S. 2015; Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arterioscler Thromb Vasc Biol. 35:2677–2685. DOI: 10.1161/ATVBAHA.115.306362. PMID: 26449749. PMCID: PMC4603427.
Article
20. Samuel R, Duda DG, Fukumura D, Jain RK. 2015; Vascular diseases await translation of blood vessels engineered from stem cells. Sci Transl Med. 7:309rv6. DOI: 10.1126/scitranslmed.aaa1805. PMID: 26468328. PMCID: PMC4799660.
Article
21. Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM. 2019; Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc. 14:3082–3100. DOI: 10.1038/s41596-019-0213-z. PMID: 31554955.
Article
22. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, Matsuzaki T, Yamazaki T, Toyohara T, Osafune K, Nakauchi H, Yoshikawa HY, Taniguchi H. 2015; Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 16:556–565. DOI: 10.1016/j.stem.2015.03.004. PMID: 25891906.
Article
23. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE. 2008; Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 26:443–452. DOI: 10.1038/nbt1393. PMID: 18288110.
Article
24. Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. 2019; Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 16:255–262. DOI: 10.1038/s41592-019-0325-y. PMID: 30742039. PMCID: PMC6488032.
Article
25. Tanigawa S, Islam M, Sharmin S, Naganuma H, Yoshimura Y, Haque F, Era T, Nakazato H, Nakanishi K, Sakuma T, Yamamoto T, Kurihara H, Taguchi A, Nishinakamura R. 2018; Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Reports. 11:727–740. DOI: 10.1016/j.stemcr.2018.08.003. PMID: 30174315. PMCID: PMC6135868.
Article
26. Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, Winston K, Tran LM, Diaz MA, Fu H, Finn LS, Pei Y, Himmelfarb J, Freedman BS. 2017; Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater. 16:1112–1119. DOI: 10.1038/nmat4994. PMID: 28967916. PMCID: PMC5936694.
Article
27. Leonard A, Bertero A, Powers JD, Beussman KM, Bhandari S, Regnier M, Murry CE, Sniadecki NJ. 2018; Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol. 118:147–158. DOI: 10.1016/j.yjmcc.2018.03.016. PMID: 29604261. PMCID: PMC5940558.
Article
28. Kupfer ME, Lin WH, Ravikumar V, Qiu K, Wang L, Gao L, Bhuiyan DB, Lenz M, Ai J, Mahutga RR, Townsend D, Zhang J, McAlpine MC, Tolkacheva EG, Ogle BM. 2020; In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 127:207–224. DOI: 10.1161/CIRCRESAHA.119.316155. PMID: 32228120.
Article
29. Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T. 2008; Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation. 118(14 Suppl):S145–S152. DOI: 10.1161/CIRCULATIONAHA.107.757286. PMID: 18824746.
Article
30. Becker RC, Sadayappan S. 2020; Designing human in vitro models for drug development. J Am Coll Cardiol. 75:587–589. DOI: 10.1016/j.jacc.2019.12.013. PMID: 32057372.
31. Korzh S, Pan X, Garcia-Lecea M, Winata CL, Pan X, Wohland T, Korzh V, Gong Z. 2008; Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol. 8:84. DOI: 10.1186/1471-213X-8-84. PMID: 18796162. PMCID: PMC2564926.
Article
32. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H. 2013; In vitro expansion of single Lgr5 liver stem cells induced by Wnt-driven regeneration. Nature. 494:247–250. DOI: 10.1038/nature11826. PMID: 23354049. PMCID: PMC3634804.
Article
33. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H. 2013; Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499:481–484. DOI: 10.1038/nature12271. PMID: 23823721.
Article
34. Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, Phelan K, Mayhew C, Helmrath M, Takebe T, Wells J, Bezerra JA. 2017; Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development. 144:1056–1064. DOI: 10.1242/dev.142794. PMID: 28275009. PMCID: PMC5358109.
35. Rodríguez-Seguel E, Mah N, Naumann H, Pongrac IM, Cerdá-Esteban N, Fontaine JF, Wang Y, Chen W, Andrade-Navarro MA, Spagnoli FM. 2013; Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev. 27:1932–1946. DOI: 10.1101/gad.220244.113. PMID: 24013505. PMCID: PMC3778245.
Article
36. Grigoryan T, Wend P, Klaus A, Birchmeier W. 2008; Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 22:2308–2341. DOI: 10.1101/gad.1686208. PMID: 18765787. PMCID: PMC2749675.
Article
37. Puri S, Hebrok M. 2010; Cellular plasticity within the pancreas--lessons learned from development. Dev Cell. 18:342–356. DOI: 10.1016/j.devcel.2010.02.005. PMID: 20230744. PMCID: PMC4085547.
Article
38. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH. 2018; An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 36:432–441. DOI: 10.1038/nbt.4127. PMID: 29658944. PMCID: PMC6331203.
Article
39. Acevedo LM, Lindquist JN, Walsh BM, Sia P, Cimadamore F, Chen C, Denzel M, Pernia CD, Ranscht B, Terskikh A, Snyder EY, Cheresh DA. 2015; hESC differentiation toward an autonomic neuronal cell fate depends on distinct cues from the co-patterning vasculature. Stem Cell Reports. 4:1075–1088. DOI: 10.1016/j.stemcr.2015.04.013. PMID: 26004631. PMCID: PMC4471822.
Article
40. Song L, Yuan X, Jones Z, Griffin K, Zhou Y, Ma T, Li Y. 2019; Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep. 9:5977. DOI: 10.1038/s41598-019-42439-9. PMID: 30979929. PMCID: PMC6461701.
Article
41. McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai YH, Mayhew CN, Spence JR, Zavros Y, Wells JM. 2014; Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 516:400–404. DOI: 10.1038/nature13863. PMID: 25363776. PMCID: PMC4270898.
Article
42. Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF, Wells JM, Helmrath MA. 2014; An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 20:1310–1314. DOI: 10.1038/nm.3737. PMID: 25326803. PMCID: PMC4408376.
Article
43. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A. 2015; Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 525:251–255. DOI: 10.1038/nature14966. PMID: 26287467.
Article
44. Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, Liu G, Liu GL. 2020; Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J Virology. 94:e01006–20. DOI: 10.1128/JVI.01006-20. PMID: 32796075. PMCID: PMC7565635.
Article
45. Soler MJ, Riera M, Batlle D. 2012; New experimental models of diabetic nephropathy in mice models of type 2 diabetes: efforts to replicate human nephropathy. Exp Diabetes Res. 2012:616313. DOI: 10.1155/2012/616313. PMID: 22461787. PMCID: PMC3291115.
Article
46. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM. 2020; Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 181:905–913.e7. DOI: 10.1016/j.cell.2020.04.004. PMID: 32333836. PMCID: PMC7181998.
Article
47. Lindvall O. 2016; Clinical translation of stem cell transplantation in Parkinson's disease. J Intern Med. 279:30–40. DOI: 10.1111/joim.12415. PMID: 26332959.
Article
48. Sobrino A, Phan DT, Datta R, Wang X, Hachey SJ, Romero-López M, Gratton E, Lee AP, George SC, Hughes CC. 2016; 3D microtumors in vitro supported by perfused vascular networks. Sci Rep. 6:31589. DOI: 10.1038/srep31589. PMID: 27549930. PMCID: PMC4994029.
Article
49. Li M, Izpisua Belmonte JC. 2019; Organoids-preclinical models of human disease. N Engl J Med. 380:569–579. DOI: 10.1056/NEJMra1806175. PMID: 30726695.
50. Kretzschmar K, Clevers H. 2016; Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 38:590–600. DOI: 10.1016/j.devcel.2016.08.014. PMID: 27676432.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr