Korean J Physiol Pharmacol.  2021 May;25(3):239-249. 10.4196/kjpp.2021.25.3.239.

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

Affiliations
  • 1Department of Cardiovascular, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
  • 2Departments of Cardiovascular, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
  • 3Departments of Judicial Expertise, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China

Abstract

The present study explored the therapeutic potential of hydrogen sulfide (H2 S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of 2, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine ( H 2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering 2.The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

Keyword

Aging; Cysteine; Heart; Hydrogen sulfide; Ischemia; Reperfusion injury

Figure

  • Fig. 1 Influence of remote ischemic preconditioning (RIPC), hydrogen sulfide (H2S) donor, H2S precursor and HIF-1α inhibitor on ischemia-reperfusion-induced LDH-1 (A), CK-MB (B) and cTnT (C) release in young and old rats. The levels were measured in the coronary effluent immediately before subjecting to ischemia and immediately after initiating reperfusion. HIF, hypoxia-inducible factor; LDH, lactate dehydrogenase; CK, creatine kinase; cTnT, cardiac troponin T; NaHS, sodium hydrosulfide; LC, l-cysteine. ap < 0.05 vs. control before ischemia; bp < 0.05 vs. control during reperfusion; cp < 0.05 vs. RIPC in young; dp < 0.05 vs. RIPC in old; ep < 0.05 vs. NaHS (20 µM/kg) and RIPC in old; fp < 0.05 vs. LC (20 mg/kg) and RIPC in old.

  • Fig. 2 Influence of remote ischemic preconditioning (RIPC), hydrogen sulfide (H2S) donor, H2S precursor and HIF-1α inhibitor on ischemia-reperfusion-induced myocardial infarction in young and old rats. The values represent the percentage of infarcted area with respect to total area. HIF, hypoxia-inducible factor; NaHS, sodium hydrosulfide; LC, l-cysteine. ap < 0.05 vs. normal; bp < 0.05 vs. control; cp < 0.05 vs. RIPC in young; dp < 0.05 vs. RIPC in old; ep < 0.05 vs. NaHS (20 µM/kg) and RIPC in old; fp < 0.05 vs. LC (20 mg/kg) and RIPC in old.

  • Fig. 3 Influence of remote ischemic preconditioning (RIPC), hydrogen sulfide (H2S) donor, H2S precursor and HIF-1α inhibitor on ischemia-reperfusion-induced changes in the expression of cystathionine β-synthase (A) and cystathionine γ-lyase (B) in the young and old rat hearts, after 120 min of reperfusion. The values of normal groups were assigned 100% and values of all other groups were represented in the form of percentage of normal group. HIF, hypoxia-inducible factor; NaHS, sodium hydrosulfide; LC, l-cysteine. ap < 0.05 vs. normal; bp < 0.05 vs. control.

  • Fig. 4 Influence of remote ischemic preconditioning (RIPC), hydrogen sulfide (H2S) donor, H2S precursor and HIF-1α inhibitor on ischemia-reperfusion-induced changes in the H2S levels in young and old rat hearts, after 120 min of reperfusion. HIF, hypoxia-inducible factor; NaHS, sodium hydrosulfide; LC, l-cysteine. ap < 0.05 vs. normal; bp < 0.05 vs. control; cp < 0.05 vs. RIPC in young; dp < 0.05 vs. RIPC in old; ep < 0.05 vs. NaHS (20 µM/kg) and RIPC in old; fp < 0.05 vs. LC (20 mg/kg) and RIPC in old.

  • Fig. 5 Influence of remote ischemic preconditioning (RIPC), hydrogen sulfide (H2S) donor, H2S precursor and HIF-1α inhibitor on ischemia-reperfusion-induced changes in the nuclear: cytosolic ratio (in percentage) of Nrf2 (A) and HIF-1α levels (B) in young and old rat hearts, after 120 min of reperfusion. The values of normal groups were assigned 100% and values of all other groups were represented in the form of percentage of normal group. HIF, hypoxia-inducible factor; Nrf2, nuclear factor erythroid 2-related factor 2; NaHS, sodium hydrosulfide; LC, l-cysteine. (A) ap < 0.05 vs. control; bp < 0.05 vs. RIPC in young; cp < 0.05 vs. RIPC in old; dp < 0.05 vs. NaHS (20 µM/kg) and RIPC in old; ep < 0.05 vs. LC (20 mg/kg) and RIPC in old. (B) ap < 0.05 vs. normal; bp < 0.05 vs. control; cp < 0.05 vs. RIPC in young; dp < 0.05 vs. RIPC in old; ep < 0.05 vs. NaHS (20 µM/kg) and RIPC in old; fp < 0.05 vs. LC (20 mg/kg) and RIPC in old.

  • Fig. 6 Representative pictures of TTC-stained heart slices showing myocardial infarction in normal, control, RIPC in young and RIPC in old groups. TTC, triphenyl tetrazolium chloride; RIPC, remote ischemic preconditioning.


Reference

1. Donato M, Evelson P, Gelpi RJ. 2017; Protecting the heart from ischemia/reperfusion injury: an update on remote ischemic preconditioning and postconditioning. Curr Opin Cardiol. 32:784–790. DOI: 10.1097/HCO.0000000000000447. PMID: 28902715.
2. Singh A, Randhawa PK, Bali A, Singh N, Jaggi AS. 2017; Exploring the role of TRPV and CGRP in adenosine preconditioning and remote hind limb preconditioning-induced cardioprotection in rats. Cardiovasc Drugs Ther. 31:133–143. DOI: 10.1007/s10557-017-6716-3. PMID: 28194544.
Article
3. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. 2005; Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 46:450–456. DOI: 10.1016/j.jacc.2005.04.044. PMID: 16053957.
4. Singh H, Kumar M, Singh N, Jaggi AS. 2019; Late phases of cardioprotection during remote ischemic preconditioning and adenosine preconditioning involve activation of neurogenic pathway. J Cardiovasc Pharmacol. 73:63–69. DOI: 10.1097/FJC.0000000000000634. PMID: 30422893.
Article
5. Ravingerova T, Farkasova V, Griecsova L, Carnicka S, Murarikova M, Barlaka E, Kolar F, Bartekova M, Lonek L, Slezak J, Lazou A. 2016; Remote preconditioning as a novel "conditioning" approach to repair the broken heart: potential mechanisms and clinical applications. Physiol Res. 65 Suppl 1:S55–S64. DOI: 10.33549/physiolres.933392. PMID: 27643940.
Article
6. Lau JK, Roy P, Javadzadegan A, Moshfegh A, Fearon WF, Ng M, Lowe H, Brieger D, Kritharides L, Yong AS. 2018; Remote ischemic preconditioning acutely improves coronary microcirculatory function. J Am Heart Assoc. 7:e009058. DOI: 10.1161/JAHA.118.009058. PMID: 30371329. PMCID: PMC6404904.
Article
7. Moscarelli M, Fiorentino F, Suleiman MS, Emanueli C, Reeves BC, Punjabi PP, Angelini GD. 2019; Remote ischaemic preconditioning in isolated aortic valve and coronary artery bypass surgery: a randomized trial†. Eur J Cardiothorac Surg. 55:905–912. DOI: 10.1093/ejcts/ezy404. PMID: 30544237. PMCID: PMC6477640.
Article
8. Antonowicz SS, Cavallaro D, Jacques N, Brown A, Wiggins T, Haddow JB, Kapila A, Coull D, Walden A. 2018; Remote ischemic preconditioning for cardioprotection in elective inpatient abdominal surgery - a randomized controlled trial. BMC Anesthesiol. 18:76. DOI: 10.1186/s12871-018-0524-6. PMID: 29945555. PMCID: PMC6020340.
Article
9. Cho YJ, Nam K, Kim TK, Choi SW, Kim SJ, Hausenloy DJ, Jeon Y. 2019; Sevoflurane, propofol and carvedilol block myocardial protection by limb remote ischemic preconditioning. Int J Mol Sci. 20:269. DOI: 10.3390/ijms20020269. PMID: 30641885. PMCID: PMC6359553.
Article
10. Bunte S, Behmenburg F, Eckelskemper F, Mohr F, Stroethoff M, Raupach A, Heinen A, Hollmann MW, Huhn R. 2019; Cardioprotection by humoral factors released after remote ischemic preconditioning depends on anesthetic regimen. Crit Care Med. 47:e250–e255. DOI: 10.1097/CCM.0000000000003629. PMID: 30608281.
Article
11. Lou B, Gao H, Zhou C. 2017; Myocardial protection by remote ischemic preconditioning in elective PCI: effect of ageing. Int J Cardiol. 243:105. DOI: 10.1016/j.ijcard.2017.03.142. PMID: 28747017.
Article
12. Randhawa PK, Bali A, Virdi JK, Jaggi AS. 2018; Conditioning-induced cardioprotection: aging as a confounding factor. Korean J Physiol Pharmacol. 22:467–479. DOI: 10.4196/kjpp.2018.22.5.467. PMID: 30181694. PMCID: PMC6115349.
Article
13. Kabil O, Banerjee R. 2014; Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 20:770–782. DOI: 10.1089/ars.2013.5339. PMID: 23600844. PMCID: PMC3910450.
Article
14. Wu D, Wang J, Li H, Xue M, Ji A, Li Y. 2015; Role of hydrogen sulfide in ischemia-reperfusion injury. Oxid Med Cell Longev. 2015:186908. DOI: 10.1155/2015/186908. PMID: 26064416. PMCID: PMC4443900.
Article
15. Li C, Hu M, Wang Y, Lu H, Deng J, Yan X. 2015; Hydrogen sulfide preconditioning protects against myocardial ischemia/reperfusion injury in rats through inhibition of endo/sarcoplasmic reticulum stress. Int J Clin Exp Pathol. 8:7740–7751. PMID: 26339339. PMCID: PMC4555667.
16. Zhou C, Li H, Yao Y, Li L. 2014; Delayed remote ischemic preconditioning produces an additive cardioprotection to sevoflurane postconditioning through an enhanced heme oxygenase 1 level partly via nuclear factor erythroid 2-related factor 2 nuclear translocation. J Cardiovasc Pharmacol Ther. 19:558–566. DOI: 10.1177/1074248414524479. PMID: 24651515.
Article
17. Kalakech H, Tamareille S, Pons S, Godin-Ribuot D, Carmeliet P, Furber A, Martin V, Berdeaux A, Ghaleh B, Prunier F. 2013; Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning. J Mol Cell Cardiol. 65:98–104. DOI: 10.1016/j.yjmcc.2013.10.001. PMID: 24140799.
Article
18. Ling K, Xu A, Chen Y, Chen X, Li Y, Wang W. 2019; Protective effect of a hydrogen sulfide donor on balloon injury-induced restenosis via the Nrf2/HIF-1α signaling pathway. Int J Mol Med. 43:1299–1310. DOI: 10.3892/ijmm.2019.4076. PMID: 30747216. PMCID: PMC6365080.
Article
19. Mesbahzadeh B, Salarjavan H, Samarghandian S, Farkhondeh T. 2021; Chlorpyrifos with age-dependent effects in cardiac tissue of male rats. Curr Mol Pharmacol. doi: 10.2174/1874467214666210111105321. [Epub ahead of print]. DOI: 10.2174/1874467214666210111105321. PMID: 33430739.
Article
20. Wen J, Chen Z, Wang S, Zhao M, Wang S, Zhao S, Zhang X. 2021; Age-related reductions in the excitability of phasic dorsal root ganglion neurons innervating the urinary bladder in female rats. Brain Res. 1752:147251. DOI: 10.1016/j.brainres.2020.147251. PMID: 33421375.
Article
21. Kim KW, Cho HJ, Khaliq SA, Son KH, Yoon MS. 2020; Comparative analyses of mTOR/Akt and muscle atrophy-related signaling in aged respiratory and gastrocnemius muscles. Int J Mol Sci. 21:2862. DOI: 10.3390/ijms21082862. PMID: 32326050. PMCID: PMC7215274.
Article
22. Gao C, Xu DQ, Gao CJ, Ding Q, Yao LN, Li ZC, Chai W. 2012; An exogenous hydrogen sulphide donor, NaHS, inhibits the nuclear factor κB inhibitor kinase/nuclear factor κb inhibitor/nuclear factor-κB signaling pathway and exerts cardioprotective effects in a rat hemorrhagic shock model. Biol Pharm Bull. 35:1029–1034. DOI: 10.1248/bpb.b110679. PMID: 22791148.
Article
23. Zhang XJ, Meng XY, Huang XL, Dai HY, Wei P, Ling YL. 2011; [Administration of hydrogen sulfide intraperitoneally reverses the hyporesponsiveness of rat pulmonary artery induced by lipopolysaccharide and its relationship with carbon monoxide]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 23:200–203. Chinese. PMID: 21473819.
24. Yang LJ, Wan R, Shen JQ, Shen J, Wang XP. 2013; Effect of L-cysteine on remote organ injury in rats with severe acute pancreatitis induced by bile-pancreatic duct obstruction. Hepatobiliary Pancreat Dis Int. 12:428–435. DOI: 10.1016/S1499-3872(13)60067-3. PMID: 23924502.
Article
25. Yan J, Zhou B, Taheri S, Shi H. 2011; Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One. 6:e27798. DOI: 10.1371/journal.pone.0027798. PMID: 22110762. PMCID: PMC3218033.
Article
26. Komsuoglu Celikyurt I, Utkan T, Ozer C, Gacar N, Aricioglu F. 2014; Effects of YC-1 on learning and memory functions of aged rats. Med Sci Monit Basic Res. 20:130–137. DOI: 10.12659/MSMBR.891064. PMID: 25144469. PMCID: PMC4148360.
Article
27. Dong L, Fan Y, Shao X, Chen Z. 2011; Vitexin protects against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts by attenuating inflammatory response and apoptosis. Food Chem Toxicol. 49:3211–3216. DOI: 10.1016/j.fct.2011.09.040. PMID: 22001368.
Article
28. Diwan V, Kant R, Jaggi AS, Singh N, Singh D. 2008; Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem. 315:195–201. DOI: 10.1007/s11010-008-9808-3. PMID: 18528635.
Article
29. Kakimoto Y, Tsuruyama T, Miyao M, Abiru H, Sumiyoshi S, Kotani H, Haga H, Tamaki K. 2013; The effectiveness and limitations of triphenyltetrazolium chloride to detect acute myocardial infarction at forensic autopsy. Am J Forensic Med Pathol. 34:242–247. DOI: 10.1097/PAF.0b013e31828879cd. PMID: 23949140.
Article
30. Xu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, O K. 2009; Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol. 297:F27–F35. DOI: 10.1152/ajprenal.00096.2009. PMID: 19439522.
31. Siegel LM. 1965; A direct microdetermination for sulfide. Anal Biochem. 11:126–132. DOI: 10.1016/0003-2697(65)90051-5. PMID: 14328633.
Article
32. Stipanuk MH, Beck PW. 1982; Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J. 206:267–277. DOI: 10.1042/bj2060267. PMID: 7150244. PMCID: PMC1158582.
Article
33. Sadoh WE, Eregie CO, Nwaneri DU, Sadoh AE. 2014; The diagnostic value of both troponin T and creatinine kinase isoenzyme (CK-MB) in detecting combined renal and myocardial injuries in asphyxiated infants. PLoS One. 9:e91338. DOI: 10.1371/journal.pone.0091338. PMID: 24625749. PMCID: PMC3953387.
Article
34. Amani M, Jeddi S, Ahmadiasl N, Usefzade N, Zaman J. 2013; Effect of HEMADO on level of CK-MB and LDH enzymes after ischemia/reperfusion injury in isolated rat heart. Bioimpacts. 3:101–104. DOI: 10.5681/bi.2013.003. PMID: 23878794. PMCID: PMC3713869.
35. Tapuria N, Junnarkar S, Abu-Amara M, Fuller B, Seifalian AM, Davidson BR. 2012; Modulation of microcirculatory changes in the late phase of hepatic ischaemia-reperfusion injury by remote ischaemic preconditioning. HPB (Oxford). 14:87–97. DOI: 10.1111/j.1477-2574.2011.00407.x. PMID: 22221569. PMCID: PMC3277050.
Article
36. Song Y, Ye YJ, Li PW, Zhao YL, Miao Q, Hou DY, Ren XP. 2016; The cardioprotective effects of late-phase remote preconditioning of trauma depends on neurogenic pathways and the activation of PKC and NF-κB (but not iNOS) in mice. J Cardiovasc Pharmacol Ther. 21:310–319. DOI: 10.1177/1074248415609435. PMID: 26450997.
Article
37. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. 2014; Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 66:1142–1174. DOI: 10.1124/pr.113.008300. PMID: 25261534.
Article
38. Przyklenk K. 2011; Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging. 28:331–343. DOI: 10.2165/11587190-000000000-00000. PMID: 21542657.
39. Behmenburg F, Heinen A, Bruch LV, Hollmann MW, Huhn R. 2017; Cardioprotection by remote ischemic preconditioning is blocked in the aged rat heart in vivo. J Cardiothorac Vasc Anesth. 31:1223–1226. DOI: 10.1053/j.jvca.2016.07.005. PMID: 27793521.
Article
40. Heinen A, Behmenburg F, Aytulun A, Dierkes M, Zerbin L, Kaisers W, Schaefer M, Meyer-Treschan T, Feit S, Bauer I, Hollmann MW, Huhn R. 2018; The release of cardioprotective humoral factors after remote ischemic preconditioning in humans is age- and sex-dependent. J Transl Med. 16:112. DOI: 10.1186/s12967-018-1480-0. PMID: 29703217. PMCID: PMC5921545.
Article
41. Ji K, Xue L, Cheng J, Bai Y. 2016; Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway. Brain Res Bull. 121:68–74. DOI: 10.1016/j.brainresbull.2015.12.007. PMID: 26772627.
42. Pan TT, Chen YQ, Bian JS. 2009; All in the timing: a comparison between the cardioprotection induced by H2S preconditioning and post-infarction treatment. Eur J Pharmacol. 616:160–165. DOI: 10.1016/j.ejphar.2009.05.023. PMID: 19482017.
Article
43. Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, Liu GH, Misteli T. 2016; Repression of the antioxidant NRF2 pathway in premature aging. Cell. 165:1361–1374. DOI: 10.1016/j.cell.2016.05.017. PMID: 27259148. PMCID: PMC4893198.
Article
44. Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM. 2000; Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem. 275:29643–29647. DOI: 10.1074/jbc.M001029200. PMID: 10882714.
Article
45. Chang EI, Loh SA, Ceradini DJ, Chang EI, Lin SE, Bastidas N, Aarabi S, Chan DA, Freedman ML, Giaccia AJ, Gurtner GC. 2007; Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation. 116:2818–2829. DOI: 10.1161/CIRCULATIONAHA.107.715847. PMID: 18040029.
46. Shimizu Y, Nicholson CK, Lambert JP, Barr LA, Kuek N, Herszenhaut D, Tan L, Murohara T, Hansen JM, Husain A, Naqvi N, Calvert JW. 2016; Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ Heart Fail. 9:e002368. DOI: 10.1161/CIRCHEARTFAILURE.115.002368. PMCID: PMC4826721. PMID: 27056879.
Article
47. Lohninger L, Tomasova L, Praschberger M, Hintersteininger M, Erker T, Gmeiner BM, Laggner H. 2015; Hydrogen sulphide induces HIF-1α and Nrf2 in THP-1 macrophages. Biochimie. 112:187–195. DOI: 10.1016/j.biochi.2015.03.009. PMID: 25795259.
Article
48. Toth RK, Warfel NA. 2017; Strange bedfellows: nuclear factor, erythroid 2-like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants (Basel). 6:27. DOI: 10.3390/antiox6020027. PMID: 28383481. PMCID: PMC5488007.
Article
49. Johansson K, Cebula M, Rengby O, Dreij K, Carlström KE, Sigmundsson K, Piehl F, Arnér ES. 2017; Cross talk in HEK293 cells between Nrf2, HIF, and NF-κB activities upon challenges with redox therapeutics characterized with single-cell resolution. Antioxid Redox Signal. 26:229–246. DOI: 10.1089/ars.2015.6419. PMID: 26415122. PMCID: PMC5704776.
Article
Full Text Links
  • KJPP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr