Blood Res.  2021 Mar;56(1):17-25. 10.5045/br.2021.2020201.

FAS-670A>G gene polymorphism and the risk of allograft rejection after organ transplantation: a systematic review and meta-analysis

Affiliations
  • 1Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
  • 2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Sari, Iran.
  • 3Mazandaran Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
  • 4Department of Medical Parasitology and Mycology, School of Public Health, Tehran, Iran.
  • 5Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Abstract

The association between the risk of allograft rejection after organ transplantation and FAS gene polymorphism has been evaluated previously. However, inconsistent results have been reported. Hence, we conducted the most up-to-date meta-analysis to evaluate this association. All eligible studies reporting the association between FAS-670A>G polymorphism and the risk of allograft rejection published up to December 2019 were extracted using a comprehensive systematic database search in the Web of Science, Scopus, and PubMed. The pooled odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated to determine the association strength. This meta-analysis included six case-control studies with 277 patients who experienced allograft rejection and 1,001 patients who did not experience allograft rejection (controls) after organ transplantation. The overall results showed no significant association between FAS-670A>G polymorphism and the risk of allograft rejection in five genetic models (dominant model: OR=0.81, 95% CI=0.58‒1.12; recessive model: OR=0.10, 95% CI=0.80‒1.53; allelic model: OR=0.96, 95% CI=0.79‒1.18; GG vs. AA: OR=0.92, 95% CI=0.62‒1.36; and AG vs. AA: OR=0.75, 95% CI=0.52‒1.08). Moreover, subgroup analysis according to ethnicity and age did not reveal statistically significant results. Our findings suggest that FAS-670A>G polymorphism is not associated with the risk of allograft rejection after organ transplantation.

Keyword

FAS; Allograft rejection; Polymorphism; Meta-analysis

Figure

  • Fig. 1 Flow diagram of the study selection process.

  • Fig. 2 Forest plot of the association between FAS-670A>G gene single-nucleotide polymorphism and the risk of allograft rejection in the dominant model.

  • Fig. 3 Forest plot of the association between FAS-670A>G gene single-nucleotide polymorphism and the risk of allograft rejection in the recessive model.

  • Fig. 4 Forest plot of the association between FAS-670A>G gene single-nucleotide polymorphism and the risk of allograft rejection in the allelic model.

  • Fig. 5 Forest plot of the association between FAS-670A>G gene single-nucleotide polymorphism and the risk of allograft rejection in the AG vs. AA model.

  • Fig. 6 Forest plot of the association between FAS-670A>G gene single-nucleotide polymorphism and the risk of allograft rejection in the GG vs. AA model.

  • Fig. 7 Sensitivity analysis to investigate whether FAS-670A/G gene single nucleotide polymorphism contributes to risk for allograft rejection (Recessive model).


Reference

1. Black CK, Termanini KM, Aguirre O, Hawksworth JS, Sosin M. 2018; Solid organ transplantation in the 21 st century. Ann Transl Med. 6:409. DOI: 10.21037/atm.2018.09.68. PMID: 30498736. PMCID: PMC6230860.
2. Ruiz P, Maldonado P, Hidalgo Y, et al. 2013; Transplant tolerance: new insights and strategies for long-term allograft acceptance. Clin Dev Immunol. 2013:210506. DOI: 10.1155/2013/210506. PMID: 23762087. PMCID: PMC3665173.
Article
3. Benvenuto LJ, Anderson MR, Arcasoy SM. 2018; New frontiers in immunosuppression. J Thorac Dis. 10:3141–55. DOI: 10.21037/jtd.2018.04.79. PMID: 29997983. PMCID: PMC6006112.
Article
4. Zavazava N, Kabelitz D. 2000; Alloreactivity and apoptosis in graft rejection and transplantation tolerance. J Leukoc Biol. 68:167–74. PMID: 10947059.
5. Nwakoby IE, Reddy K, Patel P, et al. 2001; Fas-mediated apoptosis of neutrophils in sera of patients with infection. Infect Immun. 69:3343–9. DOI: 10.1128/IAI.69.5.3343-3349.2001. PMID: 11292757. PMCID: PMC98293.
Article
6. Martinez OM, Krams SM. 1999; Involvement of Fas-Fas ligand interactions in graft rejection. Int Rev Immunol. 18:527–46. DOI: 10.3109/08830189909088497. PMID: 10672500.
Article
7. Singh R, Pradhan V, Patwardhan M, Ghosh K. 2009; APO-1/Fas gene: structural and functional characteristics in systemic lupus erythematosus and other autoimmune diseases. Indian J Hum Genet. 15:98–102. DOI: 10.4103/0971-6866.60184. PMID: 21088713. PMCID: PMC2922636.
Article
8. Xing Y, Hogquist KA. 2012; T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 4:a006957. DOI: 10.1101/cshperspect.a006957. PMID: 22661634. PMCID: PMC3367546.
Article
9. Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. 2009; Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol. 6:15–25. DOI: 10.1038/cmi.2009.3. PMID: 19254476. PMCID: PMC4002546.
Article
10. Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. 2019; Cell death in the kidney. Int J Mol Sci. 20:3598. DOI: 10.3390/ijms20143598. PMID: 31340541. PMCID: PMC6679187.
Article
11. Tannapfel A, Kohlhaw K, Ebelt J, et al. 1999; Apoptosis and the expression of Fas and Fas ligand (FasL) antigen in rejection and reinfection in liver allograft specimens. Transplantation. 67:1079–83. DOI: 10.1097/00007890-199904150-00027. PMID: 10221500.
Article
12. Crispe IN. 2003; Hepatic T cells and liver tolerance. Nat Rev Immunol. 3:51–62. DOI: 10.1038/nri981. PMID: 12511875.
Article
13. Nunobiki O, Ueda M, Toji E, et al. 2011; Genetic polymorphism of cancer susceptibility genes and HPV infection in cervical carcinogenesis. Patholog Res Int. 2011:364069. DOI: 10.4061/2011/364069. PMID: 21660264. PMCID: PMC3108378.
Article
14. Huang QR, Morris D, Manolios N. 1997; Identification and character-ization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol. 34:577–82. DOI: 10.1016/S0161-5890(97)00081-3. PMID: 9393960.
15. Sibley K, Rollinson S, Allan JM, et al. 2003; Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 63:4327–30. PMID: 12907599.
16. Ertan P, Mir S, Ozkayin N, Berdeli A. 2010; Association of FAS -670A/G and FASL -843C/T gene polymorphisms on allograft nephropathy in pediatric renal transplant patients. Iran J Pediatr. 20:442–50. PMID: 23056744. PMCID: PMC3446084.
17. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. 2010; Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 8:336–41. DOI: 10.1016/j.ijsu.2010.02.007. PMID: 20171303.
Article
18. Stang A. 2010; Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 25:603–5. DOI: 10.1007/s10654-010-9491-z. PMID: 20652370.
Article
19. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. 2006; Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 11:193–206. DOI: 10.1037/1082-989X.11.2.193. PMID: 16784338.
20. DerSimonian R, Laird N. 1986; Meta-analysis in clinical trials. Control Clin Trials. 7:177–88. DOI: 10.1016/0197-2456(86)90046-2. PMID: 3802833.
Article
21. Mantel N, Haenszel W. 1959; Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 22:719–48. PMID: 13655060.
22. Begg CB, Mazumdar M. 1994; Operating characteristics of a rank correlation test for publication bias. Biometrics. 50:1088–101. DOI: 10.2307/2533446. PMID: 7786990.
Article
23. Egger M, Davey Smith G, Schneider M, Minder C. 1997; Bias in meta-analysis detected by a simple, graphical test. BMJ. 315:629–34. DOI: 10.1136/bmj.315.7109.629. PMID: 9310563. PMCID: PMC2127453.
Article
24. Cappellesso S, Valentin JF, Al-Najjar A, et al. 2002; Recipient TNFRSF6 (FAS) gene polymorphism and acute renal allograft rejection. Transplant Proc. 34:803–4. DOI: 10.1016/S0041-1345(01)02916-5. PMID: 12034188.
Article
25. Marín LA, Muro M, Moya-Quiles MR, et al. 2006; Study of Fas (CD95) and FasL (CD178) polymorphisms in liver transplant recipients. Tissue Antigens. 67:117–26. DOI: 10.1111/j.1399-0039.2006.00538.x. PMID: 16441482.
Article
26. Jahadi Hosseini HR, Kamali Sarvestani E, Akbari M, Mosallaei M. 2009; Effect of Fas-670 A/G gene polymorphism on corneal allograft endothelial rejection. Iran J Immunol. 6:28–32. PMID: 19293475.
27. Girnita DM, Ohmann EL, Brooks MM, et al. 2011; Gene polymorphisms impact the risk of rejection with hemodynamic compromise: a multicenter study. Transplantation. 91:1326–32. DOI: 10.1097/TP.0b013e31821c1e10. PMID: 21659963.
Article
28. Fadel FI, Elshamaa MF, Salah A, et al. 2016; Fas/Fas Ligand pathways gene polymorphisms in pediatric renal allograft rejection. Transpl Immunol. 37:28–34. DOI: 10.1016/j.trim.2016.04.006. PMID: 27109035.
Article
29. Elmore S. 2007; Apoptosis: a review of programmed cell death. Toxicol Pathol. 35:495–516. DOI: 10.1080/01926230701320337. PMID: 17562483. PMCID: PMC2117903.
Article
30. Carroll HP, Ali S, Kirby JA. 2001; Accelerating the induction of Fas-mediated T cell apoptosis: a strategy for transplant tolerance? Clin Exp Immunol. 126:589–97. DOI: 10.1046/j.1365-2249.2001.01706.x. PMID: 11737081. PMCID: PMC1906223.
Article
31. Klemke CD, Brenner D, Weiss EM, et al. 2009; Lack of T-cell receptor-induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death. Cancer Res. 69:4175–83. DOI: 10.1158/0008-5472.CAN-08-4631. PMID: 19435902.
Article
32. Boix F, Millan O, San Segundo D, et al. 2016; High expression of CD38, CD69, CD95 and CD154 biomarkers in cultured peripheral T lymphocytes correlates with an increased risk of acute rejection in liver allograft recipients. Immunobiology. 221:595–603. DOI: 10.1016/j.imbio.2016.01.008. PMID: 26850323.
Article
33. Mancebo E, Castro MJ, Allende LM, et al. 2016; High proportion of CD95(+) and CD38(+) in cultured CD8(+) T cells predicts acute rejection and infection, respectively, in kidney recipients. Transpl Immunol. 34:33–41. DOI: 10.1016/j.trim.2016.01.001. PMID: 26773856.
Article
34. Wang YL, Zhang YY, Li G, et al. 2005; Correlation of CD95 and soluble CD95 expression with acute rejection status of liver trans-plantation. World J Gastroenterol. 11:1700–4. DOI: 10.3748/wjg.v11.i11.1700. PMID: 15786554. PMCID: PMC4305958.
Article
35. Kanemitsu S, Ihara K, Saifddin A, et al. 2002; A functional polymo-rphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosus. J Rheumatol. 29:1183–8. PMID: 12064832.
36. Farre L, Bittencourt AL, Silva-Santos G, et al. 2008; Fas 670 promoter polymorphism is associated to susceptibility, clinical pre-sentation, and survival in adult T cell leukemia. J Leukoc Biol. 83:220–2. DOI: 10.1189/jlb.0407198. PMID: 17962369.
37. Razi B, Alizadeh S, Imani D, Rezaei R, Omidkhoda A. 2017; Interferon-gamma +874 (T/A) polymorphism and susceptibility to aplastic anemia: a systematic review and meta-analysis. Evid Based Med Pract. 3:1000112. DOI: 10.4172/2471-9919.1000112.
Article
38. Ding YW, Pan SY, Xie W, Shen HY, Wang HH. 2018; Elevated soluble Fas and FasL in cerebrospinal fluid and serum of patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurol. 9:904. DOI: 10.3389/fneur.2018.00904. PMID: 30410466. PMCID: PMC6209679.
Article
39. Pérez EC, Shulzhenko N, Morgun A, et al. 2006; Expression of Fas, FasL, and soluble Fas mRNA in endomyocardial biopsies of human cardiac allografts. Hum Immunol. 67:22–6. DOI: 10.1016/j.humimm.2006.02.037. PMID: 16698421.
Article
40. Papoff G, Cascino I, Eramo A, Starace G, Lynch DH, Ruberti G. 1996; An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro. J Immunol. 156:4622–30. PMID: 8648105.
41. Adachi K, Fujino M, Kitazawa Y, et al. 2006; Exogenous expression of Fas-ligand or CrmA prolongs the survival in rat liver transplantation. Transplant Proc. 38:2710–3. DOI: 10.1016/j.transproceed.2006.08.011. PMID: 17098047.
Article
42. Ortiz A. 2000; Nephrology forum: apoptotic regulatory proteins in renal injury. Kidney Int. 58:467–85. DOI: 10.1046/j.1523-1755.2000.00188.x. PMID: 10886604.
43. Liem LM, van Lopik T, van Nieuwenhuijze AE, van Houwelingen HC, Aarden L, Goulmy E. 1998; Soluble Fas levels in sera of bone marrow transplantation recipients are increased during acute graft-versus-host disease but not during infections. Blood. 91:1464–8. DOI: 10.1182/blood.V91.4.1464. PMID: 9454779.
Article
44. Nishioka T, Minami T, Matsumoto S, et al. 2000; Soluble FAS in renal allograft recipients. Transplant Proc. 32:1784. DOI: 10.1016/S0041-1345(00)01375-0. PMID: 11119935.
Article
45. Rivero M, Crespo J, Mayorga M, Fábrega E, Casafont F, Pons-Romero F. 2002; Involvement of the Fas system in liver allograft rejection. Am J Gastroenterol. 97:1501–6. DOI: 10.1111/j.1572-0241.2002.05797.x. PMID: 12094873.
Article
46. Wang T, Dong C, Stevenson SC, et al. 2002; Overexpression of soluble FAS attenuates transplant arteriosclerosis in rat aortic allografts. Circulation. 106:1536–42. DOI: 10.1161/01.CIR.0000027822.23269.07. PMID: 12234961.
Article
47. Mahfoudh W, Bel Hadj ad B Jr, Romdhane A, Chouchane L. 2007; A polymorphism in FAS gene promoter correlated with circulating soluble FAS levels. Int J Immunogenet. 34:209–12. DOI: 10.1111/j.1744-313X.2007.00676.x. PMID: 17504511.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr