1. Evans RS. Electronic Health Records: then, now, and in the future. Yearb Med Inform. 2016; Suppl 1(Suppl 1):S48–61.
Article
2. Nordo AH, Levaux HP, Becnel LB, Galvez J, Rao P, Stem K, et al. Use of EHRs data for clinical research: historical progress and current applications. Learn Health Syst. 2019; 3(1):e10076.
Article
3. Penning ML, Blach C, Walden A, Wang P, Donovan KM, Garza MY, et al. Near real time EHR data utilization in a clinical study. Stud Health Technol Inform. 2020; 270:337–41.
4. Gliklich RE, Dreyer NA, Leavy MB. Registries for evaluating patient outcomes: a user’s guide. 3rd ed. Rockville (MD): Agency for Healthcare Research and Quality;2014.
5. Nelson E, Talburt JR. Entity resolution for longitudinal studies in education using OYSTER. In : Proceedings of 2011 Information and Knowledge Engineering Conference (IKE); 2011 Jul 18–20; Las Vegas, NV. p. 286–90.
6. Talburt JR, Zhou Y. A practical guide to entity resolution with OYSTER. Sadiq S, editor. Handbook of data quality. Heidelberg, Germany: Springer;2013. p. 235–70.
Article
7. Erickson BJ, Buckner JC. Imaging in clinical trials. Cancer Inform. 2007; 4:13–8.
Article
8. Grant JB, Hayes RP, Baker DW, Cangialose CB, Kieszak SM, Ballard DJ. Informatics, imaging, and healthcare quality management: imaging quality improvement opportunities and lessons learned form HCFA’s Health Care Quality Improvement Program. Clin Perform Qual Health Care. 1997; 5(3):133–9.
9. Strickland NH. PACS (picture archiving and communication systems): filmless radiology. Arch Dis Child. 2000; 83(1):82–6.
11. Nass SJ, Levit LA, Gostin LO. Beyond the HIPAA Privacy Rule: enhancing privacy, improving health through research. Washington (DC): National Academies Press;2009.
12. Linden T, Khandelwal R, Harkous H, Fawaz K. The privacy policy landscape after the GDPR. Proc Priv Enhanc Technol. 2020; (1):47–64.
Article
13. Nelson GS. Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. In : Proceedings of SAS Global Forum; 2015 Apr 26–29; Dallas, TX. p. 1–23.
14. Kushida CA, Nichols DA, Jadrnicek R, Miller R, Walsh JK, Griffin K. Strategies for de-identification and anonymization of electronic health record data for use in multicenter research studies. Med Care. 2012; 50(Suppl):S82–101.
Article
15. Chevrier R, Foufi V, Gaudet-Blavignac C, Robert A, Lovis C. Use and understanding of anonymization and de-identification in the biomedical literature: scoping review. J Med Internet Res. 2019; 21(5):e13484.
Article
16. Kayaalp M. Modes of de-identification. AMIA Annu Symp Proc. 2018; 2017:1044–50.
17. Riedl B, Neubauer T, Goluch G, Boehm O, Reinauer G, Krumboeck A. A secure architecture for the pseudonymization of medical data. In : Proceedings of the 2nd International Conference on Availability, Reliability and Security (ARES); 2007 Apr 10–13; Vienna, Austria. p. 318–24.
Article
18. Aryanto KY, Oudkerk M, van Ooijen PM. Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. Eur Radiol. 2015; 25(12):3685–95.
Article
19. Bennett W, Smith K, Jarosz Q, Nolan T, Bosch W. Reengineering workflow for curation of DICOM datasets. J Digit Imaging. 2018; 31(6):783–91.
Article
20. Perl Open Source Digital Imaging and Communications in Medicine Archive (POSDA) [Internet] [place unknown]. github.com. 2019. [cited at 2020 Sep 17]. Available from:
https://github.com/UAMS-DBMI/PosdaTools.
21. Bruland P, Doods J, Brix T, Dugas M, Storck M. Connecting healthcare and clinical research: workflow optimizations through seamless integration of EHR, pseudonymization services and EDC systems. Int J Med Inform. 2018; 119:103–8.
Article
22. Meystre SM, Lovis C, Burkle T, Tognola G, Budrionis A, Lehmann CU. Clinical data reuse or secondary use: current status and potential future progress. Yearb Med Inform. 2017; 26(1):38–52.
Article
23. Fielding RT, Taylor RN. Architectural styles and the design of network-based software architectures. Irvine (CA): University of California;2000.
24. Baghal A, Zozus M, Baghal A, Al-Shukri S, Prior F. Factors associated with increased adoption of a research data warehouse. Stud Health Technol Inform. 2019; 257:31–5.
25. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007; 25(11):1251–5.
Article
26. Syed H, Talburt J, Liu F, Pullen D, Wu N. Developing and refining matching rules for entity resolution. In : Proceedings of the International Conference on Information and Knowledge Engineering (IKE); 2012 Jul 16–19; Las Vegas, NV.
27. Foran DJ, Chen W, Chu H, Sadimin E, Loh D, Riedlinger G, et al. Roadmap to a comprehensive clinical data warehouse for precision medicine applications in oncology. Cancer Inform. 2017; 16:1176935117694349.
Article
29. Sood HS, Bates DW, Halamka JD, Sheikh A. Has the time come for a unique patient identifier for the U.S.? NEJM Catal. 2018; 4(1):1–4.