1. Chaw L, Chien LC, Wong J, Takahashi K, Koh D, Lin RT. Global trends and gaps in research related to latent tuberculosis infection.
BMC Public Health 2020;20:352.DOI:
10.1186/s12889-020-8419-0. PMID:
32183753. PMCID:
PMC7079542.
2. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017:S2213-2600(17)30079-6.
3. Herrera M, Vera C, Keynan Y, Rueda ZV. Gaps in Study Design for Immune Parameter Research for Latent Tuberculosis Infection: A Systematic Review.
J Immunol Res 2020;2020:8074183.DOI:
10.1155/2020/8074183. PMID:
32377537. PMCID:
PMC7191376.
4. Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, et al. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects.
Front Microbiol 2019;10:2789.DOI:
10.3389/fmicb.2019.02789. PMID:
31921004. PMCID:
PMC6930807.
5. Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies.
Nat Rev Microbiol 2009;7:845-55.DOI:
10.1038/nrmicro2236. PMID:
19855401. PMCID:
PMC4144869.
7. Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors.
Immunol Rev 2018;282:121-50.DOI:
10.1111/imr.12634. PMID:
29431212. PMCID:
PMC5813811.
10. Torraca V, Tulotta C, Snaar-Jagalska BE, Meijer AH. The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme.
Sci Rep 2017;7:45061.DOI:
10.1038/srep45061. PMID:
28332618. PMCID:
PMC5362882.
11. Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection.
Mucosal Immunol 2011;4:252-60.DOI:
10.1038/mi.2011.13. PMID:
21430655. PMCID:
PMC3294290.
12. Daley CL, Caminero JA. Management of multidrug resistant tuberculosis.
Semin Respir Crit Care Med 2013;34:44-59.DOI:
10.1055/s-0032-1333546. PMID:
23460005.
15. Shim D, Kim H, Shin SJ.
Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy.
Front Immunol 2020;11:910.DOI:
10.3389/fimmu.2020.00910. PMID:
32477367. PMCID:
PMC7235167.
16. Sharan R, Bucsan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, et al. Chronic Immune Activation in TB/HIV Co-infection.
Trends Microbiol 2020;28:619-32.DOI:
10.1016/j.tim.2020.03.015. PMID:
32417227.
17. Shankar EM, Vignesh R, Ellegård R, Barathan M, Chong YK, Bador MK, et al. HIV-
Mycobacterium tuberculosis co-infection: a ’danger-couple model’ of disease pathogenesis.
Pathog Dis 2014;70:110-8.DOI:
10.1111/2049-632X.12108. PMID:
24214523.
20. Roach DR, Bean AGD, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection.
J Immunol 2002;168:4620-7.DOI:
10.4049/jimmunol.168.9.4620. PMID:
11971010.
21. Turner RD, Chiu C, Churchyard GJ, Esmail H, Lewinsohn DM, Gandhi NR, et al. Tuberculosis Infectiousness and Host Susceptibility.
J Infect Dis 2017;216:S636-S43.DOI:
10.1093/infdis/jix361. PMID:
29112746. PMCID:
PMC5853924.
22. Wang MG, Luo L, Zhang Y, Liu X, Liu L, He JQ. Treatment outcomes of tuberculous meningitis in adults: a systematic review and meta-analysis.
BMC Pulm Med 2019;19:200.DOI:
10.1186/s12890-019-0966-8. PMID:
31694599. PMCID:
PMC6833188.
24. Cho JK, Choi YM, Lee SS, Park HK, Cha RR, Kim WS, et al. Clinical features and outcomes of abdominal tuberculosis in southeastern Korea: 12 years of experience.
BMC Infect Dis 2018;18:699.DOI:
10.1186/s12879-018-3635-2. PMID:
30587154. PMCID:
PMC6307147.
27. Guerreiro R, Santos-Costa Q, Azevedo-Pereira JM. [The chemokines and their receptors: characteristics and physiological functions]. Acta Med Port 2011;24 Suppl 4:967-76.
28. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy.
Nat Rev Immunol 2017;17:559-72.DOI:
10.1038/nri.2017.49. PMID:
28555670. PMCID:
PMC5731833.
30. Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P. Role of CC Chemokines Subfamily in the Platinum Drugs Resistance Promotion in Cancer.
Front Immunol 2020;11:901.DOI:
10.3389/fimmu.2020.00901. PMID:
32499779. PMCID:
PMC7243460.
31. Tripathi DK, Poluri KM. Molecular insights into kinase mediated signaling pathways of chemokines and their cognate G protein coupled receptors.
Front Biosci (Landmark Ed) 2020;25:1361-85. DOI:
10.2741/4860.
32. Hembruff SL, Cheng N. Chemokine signaling in cancer: Implications on the tumor microenvironment and therapeutic targeting. Cancer Ther 2009;7:254-67.
34. Orme IM, Cooper AM. Cytokine/chemokine cascades in immunity to tuberculosis.
Immunol Today 1999;20:307-12.DOI:
10.1016/S0167-5699(98)01438-8.
35. Wickremasinghe MI, Thomas LH, Friedland JS. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J Immunol 1999;163:3936-47.
36. O’Kane CM, Boyle JJ, Horncastle DE, Elkington PT, Friedland JS. Monocyte-dependent fibroblast CXCL8 secretion occurs in tuberculosis and limits survival of mycobacteria within macrophages.
J Immunol 2007;178:3767-76.DOI:
10.4049/jimmunol.178.6.3767. PMID:
17339475.
37. Etna MP, Giacomini E, Severa M, Coccia EM. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis.
Semin Immunol 2014;26:543-51. DOI:
10.1016/j.smim.2014.09.011. PMID:
25453229.
38. Orme IM, Henao-Tamayo MI. Trying to See the Forest through the Trees: Deciphering the Nature of Memory Immunity to
Mycobacterium tuberculosis.
Front Immunol 2018;9:461. DOI:
10.3389/fimmu.2018.00461. PMID:
29568298. PMCID:
PMC5852080.
39. Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, et al. Plasma chemokines are biomarkers of disease severity, higher bacterial burden and delayed sputum culture conversion in pulmonary tuberculosis.
Sci Rep 2019;9:18217.DOI:
10.1038/s41598-019-54803-w. PMID:
31796883. PMCID:
PMC6890773.
42. Qiu X, Tang Y, Yue Y, Zeng Y, Li W, Qu Y, et al. Accuracy of interferon-gamma-induced protein 10 for diagnosing latent tuberculosis infection: a systematic review and meta-analysis.
Clin Microbiol Infect 2019;25:667-72.DOI:
10.1016/j.cmi.2018.12.006. PMID:
30553864.
43. Wawrocki S, Seweryn M, Kielnierowski G, Rudnicka W, Wlodarczyk M, Druszczynska M. IL-18/IL-37/IP-10 signalling complex as a potential biomarker for discriminating active and latent TB.
PLoS One 2019;14:e0225556.DOI:
10.1371/journal.pone.0225556. PMID:
31821340. PMCID:
PMC6903724.
44. Palmer MV, Thacker TC, Rabideau MM, Jones GJ, Kanipe C, Vordermeier HM, et al. Biomarkers of cell-mediated immunity to bovine tuberculosis.
Vet Immunol Immunopathol 2020;220:109988.DOI:
10.1016/j.vetimm.2019.109988. PMID:
31846797.
45. Mamishi S, Mahmoudi S, Banar M, Hosseinpour Sadeghi R, Marjani M, Pourakbari B. Diagnostic accuracy of interferon (IFN)-gamma inducible protein 10 (IP-10) as a biomarker for the discrimination of active and latent tuberculosis.
Mol Biol Rep 2019;46:6263-9.DOI:
10.1007/s11033-019-05067-0. PMID:
31564016.
47. Sun T, Wu B, Wang J, Yuan T, Huang H, Xu D, et al. Evaluation of the Diagnostic Efficacy of Monocyte Parameters and MCP-1 to Distinguishing Active Tuberculosis from Latent Tuberculosis.
Clin Lab 2019;65.DOI:
10.7754/Clin.Lab.2018.181115.
48. Kathamuthu GR, Sridhar R, Baskaran D, Babu S. Low body mass index has minimal impact on plasma levels of cytokines and chemokines in tuberculous lymphadenitis.
J Clin Tuberc Other Mycobact Dis 2020;20:100163.DOI:
10.1016/j.jctube.2020.100163. PMID:
32420460. PMCID:
PMC7218292.
49. de Oyarzabal E, García-García L, Rangel-Escareño C, Ferreyra-Reyes L, Orozco L, Herrera MT, et al. Expression of USP18 and IL2RA Is Increased in Individuals Receiving Latent Tuberculosis Treatment with Isoniazid.
J Immunol Res 2019;2019:1297131.DOI:
10.1155/2019/1297131. PMID:
31886294. PMCID:
PMC6925913.
50. Sheng YF, Qi Q. Association of chemotactic chemokine ligand 5 rs2107538 polymorphism with tuberculosis susceptibility: A meta-analysis.
Innate Immun 2020;26:358-63.DOI:
10.1177/1753425919891662. PMID:
31874580.
52. Jiang J, Cao Z, Qu J, Liu H, Han H, Cheng X. PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13.
Scand J Immunol 2020;91:e12858.DOI:
10.1111/sji.12858.
55. Kim HJ, Ryu S, Choi SH, Seo H, Yoo SS, Lee SY, et al. Comparison of biochemical parameters and chemokine levels in pleural fluid between patients with anergic and non-anergic tuberculous pleural effusion.
Tuberculosis (Edinb) 2020;123:101940.DOI:
10.1016/j.tube.2020.101940. PMID:
32452425.
56. Kwon JS, Park JH, Kim JY, Cha HH, Kim MJ, Chong YP, et al. Diagnostic Usefulness of Cytokine and Chemokine Levels in the Cerebrospinal Fluid of Patients with Suspected Tuberculous Meningitis.
Am J Trop Med Hyg 2019;101:343-9.DOI:
10.4269/ajtmh.18-0947. PMID:
31264559. PMCID:
PMC6685561.
57. Hoft SG, Sallin MA, Kauffman KD, Sakai S, Ganusov VV, Barber DL. The Rate of CD4 T Cell Entry into the Lungs during
Mycobacterium tuberculosis Infection Is Determined by Partial and Opposing Effects of Multiple Chemokine Receptors.
Infect Immun 2019;87:e00841-18.DOI:
10.1128/IAI.00491-19. PMID:
31434760. PMCID:
PMC6704601.
58. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, et al. Cutting edge: control of
Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells.
J Immunol 2014;192:2965-9.DOI:
10.4049/jimmunol.1400019. PMID:
24591367. PMCID:
PMC4010124.
59. Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis.
Nature 2019;570:528-32.DOI:
10.1038/s41586-019-1276-2. PMID:
31168092. PMCID:
PMC6626542.
60. Matsuzaki G, Yamasaki M, Tamura T, Umemura M. Dispensable role of chemokine receptors in migration of mycobacterial antigen-specific CD4(+) T cells into
Mycobacterium-infected lung.
Immunobiology 2019;224:440-48.DOI:
10.1016/j.imbio.2019.01.006. PMID:
30795859.
61. Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, et al. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with
M. tuberculosis.
Clin Exp Immunol 2020;199:230-43.DOI:
10.1111/cei.13388. PMID:
31631328.
62. Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Coexistent Helminth Infection-Mediated Modulation of Chemokine Responses in Latent Tuberculosis.
J Immunol 2019;202:1494-500.DOI:
10.4049/jimmunol.1801190. PMID:
30651341. PMCID:
PMC6382527.
63. Choi UY, Kang JS, Hwang YS, Kim YJ. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases.
Exp Mol Med 2015;47:e144.DOI:
10.1038/emm.2014.110. PMID:
25744296. PMCID:
PMC4351405.
64. Leisching G, Ali A, Cole V, Baker B. 2’-5’-Oligoadenylate synthetase-like protein inhibits intracellular
M. tuberculosis replication and promotes proinflammatory cytokine secretion.
Mol Immunol 2020;118:73-8.DOI:
10.1016/j.molimm.2019.12.004. PMID:
31855809.
65. Leisching G, Cole V, Ali AT, Baker B. OAS1, OAS2 and OAS3 restrict intracellular M. tb replication and enhance cytokine secretion.
Int J Infect Dis 2019;80S:S77-S84.DOI:
10.1016/j.ijid.2019.02.029. PMID:
30822544.
66. Refai A, Gritli S, Barbouche MR, Essafi M.
Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype.
Front Cell Infect Microbiol 2018;8:327.DOI:
10.3389/fcimb.2018.00327. PMID:
30283745. PMCID:
PMC6157333.
67. Li F, Luo J, Xu H, Wang Y, Jiang W, Chang K, et al. Early secreted antigenic target 6-kDa from
Mycobacterium tuberculosis enhanced the protective innate immunity of macrophages partially via HIF1alpha.
Biochem Biophys Res Commun 2020;522:26-32.DOI:
10.1016/j.bbrc.2019.11.045. PMID:
31735338.
68. Kviatcovsky D, Rivadeneyra L, Balboa L, Yokobori N, López B, Ritacco V, et al.
Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF-alpha Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions.
Mediators Inflamm 2017;2017:2810606.DOI:
10.1155/2017/2810606. PMID:
28852268. PMCID:
PMC5568625.
69. Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M, Blair RV, et al. Pulmonary
Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment.
JCI Insight 2020; 5:e137858.DOI:
10.1172/jci.insight.137858. PMID:
32554933. PMCID:
PMC7453885.
70. Gupta A, Saqib M, Singh B, Pal L, Nishikanta A, Bhaskar S.
Mycobacterium indicus pranii Induced Memory T-Cells in Lung Airways Are Sentinels for Improved Protection Against M.tb Infection.
Front Immunol 2019;10:2359.DOI:
10.3389/fimmu.2019.02359. PMID:
31681272. PMCID:
PMC6813244.
71. Arnold IC, Zhang X, Artola-Boran M, Fallegger A, Sander P, Johansen P, et al. BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues.
PLoS Pathog 2019;15:e1007866.DOI:
10.1371/journal.ppat.1007866. PMID:
31188899. PMCID:
PMC6590837.
72. Pydi SS, Ghousunnissa S, Devalraju KP, Ramaseri SS, Gaddam R, Auzumeedi SK, et al. Down regulation of RANTES in pleural site is associated with inhibition of antigen specific response in tuberculosis.
Tuberculosis (Edinb) 2019;116S:S123-S30.DOI:
10.1016/j.tube.2019.04.020. PMID:
31103419.
73. Yu S, Shen J, Lao S, Yang B, Wu C. Distinct functions of CXCR3(+) and CCR4(+)CD4(+) T-cells accumulated in human tuberculosis pleural fluid.
Int J Tuberc Lung Dis 2018;22:1514-22.DOI:
10.5588/ijtld.18.0172. PMID:
30606326.
74. Goenka A, Prise IE, Connolly E, Fernandez-Soto P, Morgan D, Cavet JS, et al. Infant Alveolar Macrophages Are Unable to Effectively Contain
Mycobacterium tuberculosis.
Front Immunol 2020;11:486.DOI:
10.3389/fimmu.2020.00486. PMID:
32265931. PMCID:
PMC7107672.
75. Hertz D, Dibbern J, Eggers L, von Borstel L, Schneider BE. Increased male susceptibility to
Mycobacterium tuberculosis infection is associated with smaller B cell follicles in the lungs.
Sci Rep 2020;10:5142.DOI:
10.1038/s41598-020-61503-3. PMID:
32198367. PMCID:
PMC7083901.
76. Waghmare PJ, Lende T, Goswami K, Gupta A, Gupta A, Gangane N, et al. Immunological host responses as surveillance and prognostic markers in tubercular infections. Int J Mycobacteriol 2019;8:190-5.
77. Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J 3rd, Faé KC, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis.
J Clin Invest 2014;124:1268-82.DOI:
10.1172/JCI72030. PMID:
24509076. PMCID:
PMC3934185.
78. Kim TS, Jin YB, Kim YS, Kim S, Kim JK, Lee HM, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions.
Autophagy 2019;15:1356-75.DOI:
10.1080/15548627.2019.1582743. PMID:
30774023. PMCID:
PMC6628940.
79. Gopalakrishnan A, Dietzold J, Verma S, Bhagavathula M, Salgame P. Toll-like Receptor 2 Prevents Neutrophil-Driven Immunopathology during Infection with
Mycobacterium tuberculosis by Curtailing CXCL5 Production.
Infect Immun 2019; 87:e00760-18.DOI:
10.1128/IAI.00760-18. PMID:
30559223. PMCID:
PMC6386542.
80. Ashhurst AS, Flórido M, Lin LCW, Quan D, Armitage E, Stifter SA, et al. CXCR6-Deficiency Improves the Control of Pulmonary
Mycobacterium tuberculosis and Influenza Infection Independent of T-Lymphocyte Recruitment to the Lungs.
Front Immunol 2019;10:339.DOI:
10.3389/fimmu.2019.00339. PMID:
30899256. PMCID:
PMC6416161.
81. Scott NR, Swanson RV, Al-Hammadi N, Domingo-Gonzalez R, Rangel-Moreno J, Kriel BA, et al. S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis.
J Clin Invest 2020;130:3098-112.DOI:
10.1172/JCI130546. PMID:
32134742. PMCID:
PMC7259997.
82. Zhang Y, Li S, Liu Q, Long R, Feng J, Qin H, et al.
Mycobacterium tuberculosis Heat-Shock Protein 16.3 Induces Macrophage M2 Polarization Through CCRL2/CX3CR1.
Inflammation 2020;43:487-506.DOI:
10.1007/s10753-019-01132-9. PMID:
31748849. PMCID:
PMC7170987.
83. Lugo-Villarino G, Troegeler A, Balboa L, Lastrucci C, Duval C, Mercier I, et al. The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to
Mycobacterium tuberculosis.
Front Immunol 2018;9:1123.DOI:
10.3389/fimmu.2018.01123. PMID:
29946317. PMCID:
PMC6006465.
84. Schutz C, Barr D, Andrade BB, Shey M, Ward A, Janssen S, et al. Clinical, microbiologic, and immunologic determinants of mortality in hospitalized patients with HIV-associated tuberculosis: A prospective cohort study.
PLoS Med 2019;16:e1002840.DOI:
10.1371/journal.pmed.1002840. PMID:
31276515. PMCID:
PMC6611568.
85. Kathamuthu GR, Munisankar S, Banurekha VV, Nair D, Sridhar R, Babu S. Filarial Coinfection Is Associated With Higher Bacterial Burdens and Altered Plasma Cytokine and Chemokine Responses in Tuberculous Lymphadenitis.
Front Immunol 2020;11:706.DOI:
10.3389/fimmu.2020.00706. PMID:
32373129. PMCID:
PMC7186434.