Korean J Pain.  2021 Jan;34(1):47-57. 10.3344/kjp.2021.34.1.47.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

Affiliations
  • 1Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
  • 2Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
  • 3Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
  • 4Department of Pathology, Vocational Technical School of Nanhai, Foshan, China

Abstract

Background
Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms.
Methods
An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay.
Results
Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn.
Conclusions
The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

Keyword

Cytokines; Hyperalgesia; Intervertebral Disc; Microglia; Neuralgia; NFkappa B; Nucleus Pulposus; Pain; Toll-Like Receptor 4

Figure

  • Fig. 1 The protein level of (A, B) toll-like receptor 4 (TLR4) and (C, D) phosphorylated-p65 (p-p65) in spinal dorsal horn of rats with nucleus pulposus (NP) implantation (*P = 0.002 or 0.001, **P < 0.001, n = 5/group). Error bars indicate standard error of means.

  • Fig. 2 (A-C) Expression of toll-like receptor 4 (TLR4) in bilateral spinal dorsal horn of rats with nucleus pulposus (NP). (D) Specificity of antibody is tested by negative control (n = 2). (E-I) Expression of TLR4 in ipsilateral spinal dorsal horn of different groups (*P = 0.001, **P < 0.001, n = 4/group). (J-R) Double immunofluorescence staining of TLR4 (red) with cellular markers (green): ionized calcium binding adaptor molecule-1 (Iba-1, microglia marker), glial fibrillary acidic protein (GFAP, astrocyte marker) and neuronal specific nuclear protein (NeuN, neuronal marker) respectively. (H) The histogram shows Iba-1 positive area of spinal dorsal horn in different groups. Scale bar (A) = 400 μm, Scale bars (B, C) = 200 μm, Scale bars (D-H, J-R) = 100 μm. Error bars indicate standard error of means.

  • Fig. 3 (A, B) Nucleus pulposus (NP) implantation decreased mechanical and thermal thresholds in ipsilateral but not contralateral hindpaws. Toll-like receptor 4 antagonist TAK242 (TAK) (C, D) and nuclear factor-kappa B inhibitor pyrrolidinedithiocarbamic acid (PDTC) (E, F) alleviate mechanical and thermal pain behaviors of rats with NP (vs. sham, *P = 0.001, **P < 0.001; vs. NP + vehicle [Veh], #P = 0.002; n = 10/group). Error bars indicate standard error of means. PWT: paw withdrawal threshold, PWL: paw withdrawal latency, ipsi: ipsilateral hindpaws, contra: contralateral hindpaws.

  • Fig. 4 TAK242 (TAK) decreases spinal phosphorylated-p65 (p-p65) expression (C, D) without changing toll-like receptor 4 (TLR4) expression (A, B). Error bars indicate standard error of means. NP: nucleus pulposus, Veh: vehicle. **P < 0.001; n = 5/group.

  • Fig. 5 TAK242 (TAK) or pyrrolidinedithiocarbamic acid (PDTC) reduces microglia specific marker ionized calcium binding adapter molecule-1 (Iba-1) expression in rats with nucleus pulposus (NP) (vs. sham, **P < 0.001; vs. NP + vehicle [veh], ##P < 0.001; n = 4/group). Scale bars (A-G) =100 μm. (H) The histogram shows the Iba-1 positive area of spinal dorsal horn in different groups. Error bars indicate standard error of means.

  • Fig. 6 Both TAK242 (TAK) and pyrrolidinedithiocarbamic acid (PDTC) reduce spinal expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), increase IL-10 expression of rats with nucleus pulposus (NP) (**P < 0.001; n = 4/group). Error bars indicate standard error of means. Veh: vehicle.


Cited by  1 articles

The role of percutaneous neurolysis in lumbar disc herniation: systematic review and meta-analysis
Laxmaiah Manchikanti, Emilija Knezevic, Nebojsa Nick Knezevic, Mahendra R. Sanapati, Alan D. Kaye, Srinivasa Thota, Joshua A. Hirsch
Korean J Pain. 2021;34(3):346-368.    doi: 10.3344/kjp.2021.34.3.346.


Reference

1. Waddell G. 1996; Low back pain: a twentieth century health care enigma. Spine (Phila Pa 1976). 21:2820–5. DOI: 10.1097/00007632-199612150-00002. PMID: 9112705.
Article
2. Peri F, Piazza M. 2012; Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv. 30:251–60. DOI: 10.1016/j.biotechadv.2011.05.014. PMID: 21664961.
Article
3. Li C, Yan Y, Cheng J, Xiao G, Gu J, Zhang L, et al. 2016; Toll-like receptor 4 deficiency causes reduced exploratory behavior in mice under approach-avoidance conflict. Neurosci Bull. 32:127–36. DOI: 10.1007/s12264-016-0015-z. PMID: 26898297. PMCID: PMC5563737.
Article
4. Oh SH, Lee HY, Ki YJ, Kim SH, Lim KJ, Jung KT. 2020; Gabexate mesilate ameliorates the neuropathic pain in a rat model by inhibition of proinflammatory cytokines and nitric oxide pathway via suppression of nuclear factor-κB. Korean J Pain. 33:30–9. DOI: 10.3344/kjp.2020.33.1.30. PMID: 31888315. PMCID: PMC6944363.
Article
5. Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, et al. 2018; Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci. 64:129–39. DOI: 10.1007/s12031-017-1006-x. PMID: 29243061.
Article
6. Xing F, Zhang W, Wen J, Bai L, Gu H, Li Z, et al. 2018; TLR4/NF-κB signaling activation in plantar tissue and dorsal root ganglion involves in the development of postoperative pain. Mol Pain. 14:1744806918807050. DOI: 10.1177/1744806918807050. PMID: 30270727. PMCID: PMC6196615.
Article
7. Zhang H, Li Y, de Carvalho-Barbosa M, Kavelaars A, Heijnen CJ, Albrecht PJ, et al. 2016; Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J Pain. 17:775–86. DOI: 10.1016/j.jpain.2016.02.011. PMID: 26979998. PMCID: PMC4939513.
8. Liu P, Yuan HB, Zhao S, Liu FF, Jiang YQ, Guo YX, et al. 2018; Activation of GABAB receptor suppresses diabetic neuropathic pain through toll-like receptor 4 signaling pathway in the spinal dorsal horn. Mediators Inflamm. 2018:6016272. DOI: 10.1155/2018/6016272. PMID: 30647535. PMCID: PMC6311757.
Article
9. Tanga FY, Nutile-McMenemy N, DeLeo JA. 2005; The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A. 102:5856–61. DOI: 10.1073/pnas.0501634102. PMID: 15809417. PMCID: PMC556308.
Article
10. Cao L, Tanga FY, Deleo JA. 2009; The contributing role of CD14 in toll-like receptor 4 dependent neuropathic pain. Neuroscience. 158:896–903. DOI: 10.1016/j.neuroscience.2008.10.004. PMID: 18976692. PMCID: PMC2701510.
Article
11. Buchanan MM, Hutchinson M, Watkins LR, Yin H. 2010; Toll-like receptor 4 in CNS pathologies. J Neurochem. 114:13–27. DOI: 10.1111/j.1471-4159.2010.06736.x. PMID: 20402965. PMCID: PMC2909662.
Article
12. Zimmermann M. 1983; Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 16:109–10. DOI: 10.1016/0304-3959(83)90201-4. PMID: 6877845.
Article
13. Moser VA, Uchoa MF, Pike CJ. 2018; TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. J Neuroinflammation. 15:306. DOI: 10.1186/s12974-018-1340-0. PMID: 30396359. PMCID: PMC6217784.
Article
14. Yang J, Xie MX, Hu L, Wang XF, Mai JZ, Li YY, et al. 2018; Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Brain Behav Immun. 71:52–65. DOI: 10.1016/j.bbi.2018.04.016. PMID: 29709527.
Article
15. Zang Y, He XH, Xin WJ, Pang RP, Wei XH, Zhou LJ, et al. 2010; Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro. Brain Res. 1363:151–8. DOI: 10.1016/j.brainres.2010.09.048. PMID: 20858468.
Article
16. Huang Y, Zang Y, Zhou L, Gui W, Liu X, Zhong Y. 2014; The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy. Neurochem Int. 75:112–9. DOI: 10.1016/j.neuint.2014.05.012. PMID: 24893330.
Article
17. Huang Y, Li Y, Zhong X, Hu Y, Liu P, Zhao Y, et al. 2017; Src-family kinases activation in spinal microglia contributes to central sensitization and chronic pain after lumbar disc herniation. Mol Pain. 13:1744806917733637. DOI: 10.1177/1744806917733637. PMID: 28952414. PMCID: PMC5624351.
Article
18. Kaneuchi Y, Sekiguchi M, Kameda T, Kobayashi Y, Konno SI. 2019; Temporal and spatial changes of μ-opioid receptors in the brain, spinal cord and dorsal root ganglion in a rat lumbar disc herniation model. Spine (Phila Pa 1976). 44:85–95. DOI: 10.1097/BRS.0000000000002776. PMID: 30005035.
Article
19. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. 1994; Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 53:55–63. DOI: 10.1016/0165-0270(94)90144-9. PMID: 7990513.
Article
20. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. 1988; A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 32:77–88. DOI: 10.1016/0304-3959(88)90026-7. PMID: 3340425.
Article
21. Valat JP, Genevay S, Marty M, Rozenberg S, Koes B. 2010; Sciatica. Best Pract Res Clin Rheumatol. 24:241–52. DOI: 10.1016/j.berh.2009.11.005. PMID: 20227645.
Article
22. Gadjradj PS, Arts MP, van Tulder MW, Rietdijk WJR, Peul WC, Harhangi BS. 2017; Management of symptomatic lumbar disk herniation: an international perspective. Spine (Phila Pa 1976). 42:1826–34. DOI: 10.1097/BRS.0000000000002294. PMID: 28632645.
23. Andrade P, Hoogland G, Garcia MA, Steinbusch HW, Daemen MA, Visser-Vandewalle V. 2013; Elevated IL-1β and IL-6 levels in lumbar herniated discs in patients with sciatic pain. Eur Spine J. 22:714–20. DOI: 10.1007/s00586-012-2502-x. PMID: 23014739. PMCID: PMC3631043.
Article
24. Zhong Y, Huang Y, Hu Y, Xu M, Zhu L, Deng Z. 2019; SFKs/p38 pathway is involved in radicular pain by promoting spinal expression of pro-inflammatory cytokines in a rat model of lumbar disc herniation. Spine (Phila Pa 1976). 44:E1112–21. DOI: 10.1097/BRS.0000000000003076. PMID: 31261268.
Article
25. Albrecht DS, Ahmed SU, Kettner NW, Borra RJH, Cohen-Adad J, Deng H, et al. 2018; Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain. 159:968–77. DOI: 10.1097/j.pain.0000000000001171. PMID: 29419657. PMCID: PMC5908728.
Article
26. Yousefi N, Sotoodehnejadnematalahi F, Heshmati-Fakhr N, Sayyah M, Hoseini M, Ghassemi S, et al. 2019; Prestimulation of microglia through TLR4 pathway promotes interferon beta expression in a rat model of Alzheimer's disease. J Mol Neurosci. 67:495–503. DOI: 10.1007/s12031-018-1249-1. PMID: 30610591.
Article
27. Xiang HF, Cao DH, Yang YQ, Wang HQ, Zhu LJ, Ruan BH, et al. 2014; Isoflurane protects against injury caused by deprivation of oxygen and glucose in microglia through regulation of the Toll-like receptor 4 pathway. J Mol Neurosci. 54:664–70. DOI: 10.1007/s12031-014-0373-9. PMID: 25012594.
Article
28. Zusso M, Lunardi V, Franceschini D, Pagetta A, Lo R, Stifani S, et al. 2019; Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation. 16:148. DOI: 10.1186/s12974-019-1538-9. PMID: 31319868. PMCID: PMC6637517.
Article
29. Kouli A, Horne CB, Williams-Gray CH. 2019; Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies. Brain Behav Immun. 81:41–51. DOI: 10.1016/j.bbi.2019.06.042. PMID: 31271873.
Article
30. Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK. 2019; Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 10:1000. DOI: 10.3389/fimmu.2019.01000. PMID: 31134076. PMCID: PMC6522942.
Article
31. Balducci C, Frasca A, Zotti M, La Vitola P, Mhillaj E, Grigoli E, et al. 2017; Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer's disease. Brain Behav Immun. 60:188–97. DOI: 10.1016/j.bbi.2016.10.012. PMID: 27751869.
Article
32. Wang Y, Xu J, Liu Y, Li Z, Li X. 2018; TLR4-NF-κB signal involved in depressive-like behaviors and cytokine expression of frontal cortex and hippocampus in stressed C57BL/6 and ob/ob mice. Neural Plast. 2018:7254016. DOI: 10.1155/2018/7254016. PMID: 29765402. PMCID: PMC5885403.
Article
33. Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, et al. 2016; Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: the role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun. 56:271–80. DOI: 10.1016/j.bbi.2016.03.026. PMID: 27044335. PMCID: PMC4917460.
Article
34. Su M, Ran Y, He Z, Zhang M, Hu G, Tang W, et al. 2018; Inhibition of toll-like receptor 4 alleviates hyperalgesia induced by acute dural inflammation in experimental migraine. Mol Pain. 14:1744806918754612. DOI: 10.1177/1744806918754612. PMID: 29310498. PMCID: PMC5805005.
35. Jeon YH, Youn DH. 2015; Spinal gap junction channels in neuropathic pain. Korean J Pain. 28:231–5. DOI: 10.3344/kjp.2015.28.4.231. PMID: 26495077. PMCID: PMC4610936.
Article
36. Cho HK, Ahn SH, Kim SY, Choi MJ, Hwang SJ, Cho YW. 2015; Changes in the expressions of Iba1 and calcitonin gene-related peptide in adjacent lumbar spinal segments after lumbar disc herniation in a rat model. J Korean Med Sci. 30:1902–10. DOI: 10.3346/jkms.2015.30.12.1902. PMID: 26713069. PMCID: PMC4689838.
Article
37. Zhong Y, Huang YL, Hu YM, Zhu LR, Zhao YS. 2018; Puerarin alleviate radicular pain from lumbar disc herniation by inhibiting ERK-dependent spinal microglia activation. Neuropeptides. 72:30–7. DOI: 10.1016/j.npep.2018.10.001. PMID: 30466510.
Article
38. Saghaei E, Abbaszadeh F, Naseri K, Ghorbanpoor S, Afhami M, Haeri A, et al. 2013; Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats. Neurosci Res. 75:316–23. DOI: 10.1016/j.neures.2013.01.010. PMID: 23419864.
Article
39. Gruber-Schoffnegger D, Drdla-Schutting R, Hönigsperger C, Wunderbaldinger G, Gassner M, Sandkühler J. 2013; Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J Neurosci. 33:6540–51. DOI: 10.1523/JNEUROSCI.5087-12.2013. PMID: 23575851. PMCID: PMC6619063.
Article
40. Chirila AM, Brown TE, Bishop RA, Bellono NW, Pucci FG, Kauer JA. 2014; Long-term potentiation of glycinergic synapses triggered by interleukin 1β. Proc Natl Acad Sci U S A. 111:8263–8. DOI: 10.1073/pnas.1401013111. PMID: 24830427. PMCID: PMC4050559.
Article
41. Zhong Y, Zhou LJ, Ren WJ, Xin WJ, Li YY, Zhang T, et al. 2010; The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha. Brain Behav Immun. 24:874–80. DOI: 10.1016/j.bbi.2010.01.007. PMID: 20116424.
42. Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, et al. 2013; Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol. 247:466–75. DOI: 10.1016/j.expneurol.2013.01.018. PMID: 23357618.
Article
43. Wang K, Bao JP, Yang S, Hong X, Liu L, Xie XH, et al. 2016; A cohort study comparing the serum levels of pro- or anti-inflammatory cytokines in patients with lumbar radicular pain and healthy subjects. Eur Spine J. 25:1428–34. DOI: 10.1007/s00586-015-4349-4. PMID: 26684469.
Article
44. Kraychete DC, Sakata RK, Issy AM, Bacellar O, Santos-Jesus R, Carvalho EM. 2010; Serum cytokine levels in patients with chronic low back pain due to herniated disc: analytical cross-sectional study. Sao Paulo Med J. 128:259–62. DOI: 10.1590/S1516-31802010000500003. PMID: 21181064.
Article
45. Pedersen LM, Schistad E, Jacobsen LM, Røe C, Gjerstad J. 2015; Serum levels of the pro-inflammatory interleukins 6 (IL-6) and -8 (IL-8) in patients with lumbar radicular pain due to disc herniation: a 12-month prospective study. Brain Behav Immun. 46:132–6. DOI: 10.1016/j.bbi.2015.01.008. PMID: 25653193.
Article
46. Liu ZH, Miao GS, Wang JN, Yang CX, Fu ZJ, Sun T. 2016; Resolvin D1 inhibits mechanical hypersensitivity in sciatica by modulating the expression of nuclear factor-κB, phospho-extracellular signal-regulated kinase, and pro- and antiinflammatory cytokines in the spinal cord and dorsal root ganglion. Anesthesiology. 124:934–44. DOI: 10.1097/ALN.0000000000001010. PMID: 26808633.
Article
47. Sasaki N, Kikuchi S, Konno S, Sekiguchi M, Watanabe K. 2007; Anti-TNF-alpha antibody reduces pain-behavioral changes induced by epidural application of nucleus pulposus in a rat model depending on the timing of administration. Spine (Phila Pa 1976). 32:413–6. DOI: 10.1097/01.brs.0000255097.18246.bc. PMID: 17304130.
48. Olmarker K, Nutu M, Størkson R. 2003; Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-alpha inhibition. Spine (Phila Pa 1976). 28:1635–41. DOI: 10.1097/01.BRS.0000083162.35476.FF. PMID: 12897484.
Article
49. Rothman SM, Winkelstein BA. 2010; Cytokine antagonism reduces pain and modulates spinal astrocytic reactivity after cervical nerve root compression. Ann Biomed Eng. 38:2563–76. DOI: 10.1007/s10439-010-0012-8. PMID: 20309734.
Article
Full Text Links
  • KJP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr