J Korean Assoc Oral Maxillofac Surg.  2020 Oct;46(5):341-347. 10.5125/jkaoms.2020.46.5.341.

miR-155, miR-191, and miR-494 as diagnostic biomarkers for oral squamous cell carcinoma and the effects of Avastin on these biomarkers

Affiliations
  • 1Department of Biology, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • 2Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • 3Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • 4Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
  • 5Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
  • 6Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract


Objectives
Oral squamous cell carcinoma (OSCC) is one of the most common types of head and neck cancer. MicroRNAs, as new biomarkers, are recommended for diagnosis and treatment of different types of cancers. Bevacizumab, sold under the trade name Avastin, is a humanized whole monoclonal antibody that targets and blocks VEGF-A (vascular endothelial growth factor A; angiogenesis) and oncogenic signaling pathways.
Materials and Methods
This study comprised 50 cases suffering from OSCC and 50 healthy participants. Peripheral blood samples were collected in glass test tubes, and RNA extraction was started immediately. Expression levels of miR-155, miR-191, and miR-494 biomarkers in the peripheral blood of OSCC-affected individuals and healthy volunteers in vivo were evaluated using real-time PCR. The influence of Avastin on the expression levels of the aforementioned biomarkers in vitro and in the HN5 cell line was also investigated.
Results
Expression levels of miR-155, miR-191, and miR-494 in the peripheral blood of individuals affected by OSCC were higher than in those who were healthy. Moreover, Avastin at a concentration of 400 µM caused a decrease in the expression levels of the three biomarkers and a 1.5-fold, 3.5-fold, and 4-fold increase in apoptosis in the test samples compared to the controls in the HN5 cell line after 24, 48, and 72 hours, respectively.
Conclusion
The findings of this study demonstrate that overexpression of miR-155, miR-191, and miR-494 is associated with OSCC, and Avastin is able to regulate and downregulate the expression of those biomarkers and increase apoptosis in cancerous cells in the HN5 cell line

Keyword

Oral cancer; MicroRNA; Avastin; Real-time polymerase chain reaction; Apoptosis

Figure

  • Fig. 1 The percentage positivity for miR-155, miR-191, and miR-494 biomarkers in the peripheral blood of cancer patients and healthy individuals.

  • Fig. 2 The difference of expression of miR-155, miR-191, and miR-494 biomarkers between the test and control samples.


Reference

References

1. Kumar M, Nanavati R, Modi TG, Dobariya C. 2016; Oral cancer: etiology and risk factors: a review. J Cancer Res Ther. 12:458–63. https://doi.org/10.4103/0973-1482.186696 . DOI: 10.4103/0973-1482.186696. PMID: 27461593.
Article
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. 2015; Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–86. https://doi.org/10.1002/ijc.29210 . DOI: 10.1002/ijc.29210. PMID: 25220842.
Article
3. Peng Y, Croce CM. 2016; The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:15004. https://doi.org/10.1038/sigtrans.2015.4 . DOI: 10.1038/sigtrans.2015.4. PMID: 29263891. PMCID: PMC5661652.
Article
4. Nagpal N, Kulshreshtha R. 2014; miR-191: an emerging player in disease biology. Front Genet. 5:99. https://doi.org/10.3389/fgene.2014.00099 . DOI: 10.3389/fgene.2014.00099. PMID: 24795757. PMCID: PMC4005961.
Article
5. Stahlhut Espinosa CE, Slack FJ. 2006; The role of microRNAs in cancer. Yale J Biol Med. 79:131–40. PMID: 17940623. PMCID: PMC1994807.
6. Sun Y, Wang M, Lin G, Sun S, Li X, Qi J, et al. 2012; Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One. 7:e47003. https://doi.org/10.1371/journal.pone.0047003 . DOI: 10.1371/journal.pone.0047003. PMID: 23071695. PMCID: PMC3468565.
Article
7. Zhang X, Wu M, Chong QY, Zhang W, Qian P, Yan H, et al. 2018; Amplification of hsa-miR-191/425 locus promotes breast cancer proliferation and metastasis by targeting DICER1. Carcinogenesis. 39:1506–16. https://doi.org/10.1093/carcin/bgy102 . DOI: 10.1093/carcin/bgy102. PMID: 30084985.
Article
8. Chen J, Nie S, Hong B, Li C, Xiong T, Shen X, et al. 2017; MicroRNA-494 promotes tumor growth by targeting PTEN in non-small cell lung cancer. Int J Clin Exp Pathol. 10:4441–50.
9. Qu Y, Zhang H, Sun W, Han Y, Li S, Qu Y, et al. 2018; MicroRNA-155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor-β receptor 2. Cancer Sci. 109:618–28. https://doi.org/10.1111/cas.13472 . DOI: 10.1111/cas.13472. PMID: 29247570. PMCID: PMC5834794.
Article
10. Peng WZ, Ma R, Wang F, Yu J, Liu ZB. 2014; Role of miR-191/425 cluster in tumorigenesis and diagnosis of gastric cancer. Int J Mol Sci. 15:4031–48. https://doi.org/10.3390/ijms15034031 . DOI: 10.3390/ijms15034031. PMID: 24603541. PMCID: PMC3975382.
Article
11. He W, Li Y, Chen X, Lu L, Tang B, Wang Z, et al. 2014; miR-494 acts as an anti-oncogene in gastric carcinoma by targeting c-myc. J Gastroenterol Hepatol. 29:1427–34. https://doi.org/10.1111/jgh.12558 . DOI: 10.1111/jgh.12558. PMID: 24612089.
Article
12. Shi LJ, Zhang CY, Zhou ZT, Ma JY, Liu Y, Bao ZX, et al. 2015; MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential. Head Neck. 37:970–6. https://doi.org/10.1002/hed.23700 . DOI: 10.1002/hed.23700. PMID: 24692283.
Article
13. Gissi DB, Morandi L, Gabusi A, Tarsitano A, Marchetti C, Cura F, et al. 2018; A noninvasive test for MicroRNA expression in oral squamous cell carcinoma. Int J Mol Sci. 19:1789. https://doi.org/10.3390/ijms19061789 . DOI: 10.3390/ijms19061789. PMID: 29914173. PMCID: PMC6032413.
Article
14. Libório-Kimura TN, Jung HM, Chan EK. 2015; miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer. Oral Oncol. 51:151–7. https://doi.org/10.1016/j.oraloncology.2014.11.019 . DOI: 10.1016/j.oraloncology.2014.11.019. PMID: 25500095.
Article
15. Zahra A, Rubab I, Malik S, Khan A, Khan MJ, Fatmi MQ. 2018; Meta-analysis of miRNAs and their involvement as biomarkers in oral cancers. Biomed Res Int. 2018:8439820. https://doi.org/10.1155/2018/8439820 . DOI: 10.1155/2018/8439820. PMID: 29516011. PMCID: PMC5817319.
Article
16. Troiano G, Mastrangelo F, Caponio VCA, Laino L, Cirillo N, Lo Muzio L. 2018; Predictive prognostic value of tissue-based microRNA expression in oral squamous cell carcinoma: a systematic review and meta-analysis. J Dent Res. 97:759–66. https://doi.org/10.1177/0022034518762090 . DOI: 10.1177/0022034518762090. PMID: 29533734.
Article
17. Patel RS, Jakymiw A, Yao B, Pauley BA, Carcamo WC, Katz J, et al. 2011; High resolution of microRNA signatures in human whole saliva. Arch Oral Biol. 56:1506–13. https://doi.org/10.1016/j.archoralbio.2011.05.015 . DOI: 10.1016/j.archoralbio.2011.05.015. PMID: 21704302. PMCID: PMC3189266.
Article
18. Shi X, Su S, Long J, Mei B, Chen Y. 2011; MicroRNA-191 targets N-deacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803. Acta Biochim Biophys Sin (Shanghai). 43:849–56. https://doi.org/10.1093/abbs/gmr084 . DOI: 10.1093/abbs/gmr084. PMID: 21947487.
Article
19. Bedewy AML, Elmaghraby SM, Shehata AA, Kandil NS. 2017; Prognostic value of miRNA-155 expression in B-cell non-hodgkin lymphoma. Turk J Haematol. 34:207–12. https://doi.org/10.4274/tjh.2016.0286 . DOI: 10.4274/tjh.2016.0286. PMID: 28148469. PMCID: PMC5544039.
Article
20. Iorio MV, Croce CM. 2012; microRNA involvement in human cancer. Carcinogenesis. 33:1126–33. https://doi.org/10.1093/carcin/bgs140 . DOI: 10.1093/carcin/bgs140. PMID: 22491715. PMCID: PMC3514864.
Article
21. Pollutri D, Patrizi C, Marinelli S, Giovannini C, Trombetta E, Giannone FA, et al. 2018; The epigenetically regulated miR-494 associates with stem-cell phenotype and induces sorafenib resistance in hepatocellular carcinoma. Cell Death Dis. 9:4. https://doi.org/10.1038/s41419-017-0076-6 . DOI: 10.1038/s41419-017-0076-6. PMID: 29305580. PMCID: PMC5849044.
Article
22. Shih T, Lindley C. 2006; Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 28:1779–802. https://doi.org/10.1016/j.clinthera.2006.11.015 . DOI: 10.1016/j.clinthera.2006.11.015. PMID: 17212999.
Article
23. Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, et al. 2015; Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 106:1362–9. https://doi.org/10.1111/cas.12747 . DOI: 10.1111/cas.12747. PMID: 26195069. PMCID: PMC4638007.
Article
24. de Gramont A, Van Cutsem E. 2005; Investigating the potential of bevacizumab in other indications: metastatic renal cell, non-small cell lung, pancreatic and breast cancer. Oncology. 69 Suppl 3:46–56. https://doi.org/10.1159/000088483 . DOI: 10.1159/000088483. PMID: 16301835.
Article
25. Yoshida H, Yoshimura H, Matsuda S, Ryoke T, Kiyoshima T, Kobayashi M, et al. 2018; Effects of peritumoral bevacizumab injection against oral squamous cell carcinoma in a nude mouse xenograft model: a preliminary study. Oncol Lett. 15:8627–34. https://doi.org/10.3892/ol.2018.8399 . DOI: 10.3892/ol.2018.8399. PMID: 29805597. PMCID: PMC5950523.
Article
26. Zhao XM, Liu KQ, Zhu G, He F, Duval B, Richer JM, et al. 2015; Identifying cancer-related microRNAs based on gene expression data. Bioinformatics. 31:1226–34. https://doi.org/10.1093/bioinformatics/btu811 . DOI: 10.1093/bioinformatics/btu811. PMID: 25505085.
Article
27. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. 2016; microRNA therapeutics in cancer - an emerging concept. EBioMedicine. 12:34–42. https://doi.org/10.1016/j.ebiom.2016.09.017 . DOI: 10.1016/j.ebiom.2016.09.017. PMID: 27720213. PMCID: PMC5078622.
Article
28. Hammond SM. 2006; MicroRNAs as oncogenes. Curr Opin Genet Dev. 16:4–9. https://doi.org/10.1016/j.gde.2005.12.005 . DOI: 10.1016/j.gde.2005.12.005. PMID: 16361094.
Article
29. Hutvágner G, Zamore PD. 2002; A microRNA in a multiple-turnover RNAi enzyme complex. Science. 297:2056–60. https://doi.org/10.1126/science.1073827 . DOI: 10.1126/science.1073827. PMID: 12154197.
Article
30. Kroh EM, Parkin RK, Mitchell PS, Tewari M. 2010; Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 50:298–301. https://doi.org/10.1016/j.ymeth.2010.01.032 . DOI: 10.1016/j.ymeth.2010.01.032. PMID: 20146939. PMCID: PMC4186708.
Article
31. Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang X, et al. 2016; MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget. 7:84508–19. https://doi.org/10.18632/oncotarget.13022 . DOI: 10.18632/oncotarget.13022. PMID: 27811366. PMCID: PMC5356677.
Article
32. Lu S, Liao QS, Tang L. 2018; MiR-155 affects osteosarcoma cell proliferation and invasion through regulating NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 22:7633–9. https://doi.org/10.26355/eurrev_201811_16380 . DOI: 10.26355/eurrev_201811_16380. PMID: 30536304.
Article
33. Zare A, Alipoor B, Omrani MD, Zali MR, Malekpour Alamdari N, Ghaedi H. 2019; Decreased miR-155-5p, miR-15a, and miR-186 expression in gastric cancer is associated with advanced tumor grade and metastasis. Iran Biomed J. 23:338–43. https://doi.org/10.29252/.23.5.338 . DOI: 10.29252/ibj.23.5.5. PMID: 31103022. PMCID: PMC6661124.
Article
34. Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E, Belanis L, et al. 2010; hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res. 70:8077–87. https://doi.org/10.1158/0008-5472.CAN-10-1313 . DOI: 10.1158/0008-5472.CAN-10-1313. PMID: 20924108.
Article
35. Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Lu J, et al. 2014; MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 35:12157–63. https://doi.org/10.1007/s13277-014-2521-9 . DOI: 10.1007/s13277-014-2521-9. PMID: 25168367.
Article
36. Zhang XF, Li KK, Gao L, Li SZ, Chen K, Zhang JB, et al. 2015; miR-191 promotes tumorigenesis of human colorectal cancer through targeting C/EBPβ. Oncotarget. 6:4144–58. https://doi.org/10.18632/oncotarget.2864 . DOI: 10.18632/oncotarget.2864. PMID: 25784653. PMCID: PMC4414178.
Article
37. Colamaio M, Borbone E, Russo L, Bianco M, Federico A, Califano D, et al. 2011; miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol Metab. 96:E1915–24. https://doi.org/10.1210/jc.2011-0408 . DOI: 10.1210/jc.2011-0408. PMID: 21956418.
Article
38. Chen P, Pan X, Zhao L, Jin L, Lin C, Quan J, et al. 2018; MicroRNA-191-5p exerts a tumor suppressive role in renal cell carcinoma. Exp Ther Med. 15:1686–93. https://doi.org/10.3892/etm.2017.5581 . DOI: 10.3892/etm.2017.5581. PMID: 29434754. PMCID: PMC5774385.
Article
39. Macedo T, Silva-Oliveira RJ, Silva VAO, Vidal DO, Evangelista AF, Marques MMC. 2017; Overexpression of mir-183 and mir-494 promotes proliferation and migration in human breast cancer cell lines. Oncol Lett. 14:1054–60. https://doi.org/10.3892/ol.2017.6265 . DOI: 10.3892/ol.2017.6265. PMID: 28693273. PMCID: PMC5494613.
Article
40. Liu K, Liu S, Zhang W, Jia B, Tan L, Jin Z, et al. 2015; miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN. Oncol Rep. 34:1003–10. https://doi.org/10.3892/or.2015.4030 . DOI: 10.3892/or.2015.4030. PMID: 26045065.
Article
41. Zhang Y, Guo L, Li Y, Feng GH, Teng F, Li W, et al. 2018; MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer. 17:1. https://doi.org/10.1186/s12943-017-0753-1 . DOI: 10.1186/s12943-017-0753-1. PMID: 29304823. PMCID: PMC5755155.
Article
42. Yang YK, Xi WY, Xi RX, Li JY, Li Q, Gao YE. 2015; MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep. 33:2393–401. https://doi.org/10.3892/or.2015.3821 . DOI: 10.3892/or.2015.3821. PMID: 25738254.
Article
43. Yuan J, Wang K, Xi M. 2016; MiR-494 inhibits epithelial ovarian cancer growth by targeting c-Myc. Med Sci Monit. 22:617–24. https://doi.org/10.12659/msm.897288 . DOI: 10.12659/MSM.897288. PMID: 26908019. PMCID: PMC4768945.
Article
44. Zhao Z, Xia G, Li N, Su R, Chen X, Zhong L. 2018; Autophagy inhibition promotes bevacizumab-induced apoptosis and proliferation inhibition in colorectal cancer cells. J Cancer. 9:3407–16. https://doi.org/10.7150/jca.24201 . DOI: 10.7150/jca.24201. PMID: 30271503. PMCID: PMC6160673.
Article
45. Kang YK, Kang WK, Shin DB, Chen J, Xiong J, Wang J, et al. 2009; Capecitabine/cisplatin versus 5-fluorouracil/cisplatin as first-line therapy in patients with advanced gastric cancer: a randomised phase III noninferiority trial. Ann Oncol. 20:666–73. https://doi.org/10.1093/annonc/mdn717 . DOI: 10.1093/annonc/mdn717. PMID: 19153121.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr