Imaging Sci Dent.  2020 Jun;50(2):141-151. 10.5624/isd.2020.50.2.141.

Influence of tooth position within the field of view on the intensity of cone-beam computed tomographic imaging artifacts when assessing teeth restored with various intracanal materials

Affiliations
  • 1Department of Oral Diagnosis, Division of Oral Radiology, State University of Paraíba, Campina Grande, Brazil
  • 2Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
  • 3Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, Brazil

Abstract

Purpose
This study aimed to quantify the influence of tooth position within the field-of-view (FOV) on cone-beam computed tomography (CBCT) imaging artifacts' intensity when assessing teeth restored with various intracanal materials.
Materials and Methods
Seventy single-rooted teeth were divided into 7 groups (10 teeth per group): NiCr post (NC), AgPd post (AP), metal core fiberglass post (MCFG), fiberglass post (FG), anatomical fiberglass post (AFG), fiberglass post cemented with core build-up cement (FGCo), and anatomical fiberglass post cemented with core build-up cement (AFGCo). All posts were cemented using a regular dual-curing resin cement (Allcem), except FGCo and AFGCo which were cemented with a core build-up dual-curing resin cement (AllcemCore). Each tooth was scanned on a CS9000 in 5 positions within the FOV: a central position, anterior horizontal peripheral, peripheral superior, peripheral inferior, and posterior horizontal peripheral position. Hyperdense, hypodense, remaining teeth areas and ROI areas were quantitatively analyzed using ImageJ software.
Results
Posterior horizontal peripheral position increased the intensity of artifacts on FGCo and AFGCo post groups (p<0.05), and specifically the hypodense artifact intensity on FG and AFG post groups (p<0.05). NC and AP groups presented greater intensity of artifacts than any other post groups (p<0.05).
Conclusion
Artifact intensity increases in the presence of high atomic number materials and when the object is not centered within the FOV. The impact of positioning within the FOV on artifact was greater for fiberglass posts cemented with core build-up dual-curing cement than for metal posts and fiberglass posts cemented with regular dual-curing cement.

Keyword

Cone-Beam Computed Tomography; Artifacts; Root Canal Obturation
Full Text Links
  • ISD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr