2. Logitharajah P, Rutherford MA, Cowan FM. 2009; Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res. 66:222–229. DOI:
10.1203/PDR.0b013e3181a9ef34. PMID:
19390490.
Article
3. Kharoshankaya L, Stevenson NJ, Livingstone V, Murray DM, Murphy BP, Ahearne CE, Boylan GB. 2016; Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev Med Child Neurol. 58:1242–1248. DOI:
10.1111/dmcn.13215. PMID:
27595841. PMCID:
PMC5214689.
Article
4. Lundgren C, Brudin L, Wanby AS, Blomberg M. 2018; Ante- and intrapartum risk factors for neonatal hypoxic ischemic encephalopathy. J Matern Fetal Neonatal Med. 31:1595–1601. DOI:
10.1080/14767058.2017.1321628. PMID:
28486858.
Article
7. Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. 2015; Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci. 16:22368–22401. DOI:
10.3390/ijms160922368. PMID:
26389893. PMCID:
PMC4613313.
8. Ek CJ, D'Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PL, Nilsson H, Svedin P, Hagberg H, Mallard C. 2015; Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 35:818–827. DOI:
10.1038/jcbfm.2014.255. PMID:
25627141. PMCID:
PMC4420855.
Article
9. Storkebaum E, Lambrechts D, Carmeliet P. 2004; VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays. 26:943–954. DOI:
10.1002/bies.20092. PMID:
15351965.
Article
10. Silverman WF, Krum JM, Mani N, Rosenstein JM. 1999; Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience. 90:1529–1541. DOI:
10.1016/S0306-4522(98)00540-5. PMID:
10338318.
Article
11. Guo H, Zhou H, Lu J, Qu Y, Yu D, Tong Y. 2016; Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury. Neural Regen Res. 11:174–179. DOI:
10.4103/1673-5374.175067. PMID:
26981109. PMCID:
PMC4774214.
Article
13. Ip FC, Zhao YM, Chan KW, Cheng EY, Tong EP, Chandrashekar O, Fu GM, Zhao ZZ, Ip NY. 2016; Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats. BMC Complement Altern Med. 16:437. DOI:
10.1186/s12906-016-1417-1. PMID:
27814708. PMCID:
PMC5097373.
Article
14. Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, Liang X, Zhu G, Xu Z. 2018; Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci. 64:129–139. DOI:
10.1007/s12031-017-1006-x. PMID:
29243061.
Article
15. Cui X, Song H, Su J. 2017; Curcumin attenuates hypoxic-ischemic brain injury in neonatal rats through induction of nuclear factor erythroid-2-related factor 2 and heme oxygenase-1. Exp Ther Med. 14:1512–1518. DOI:
10.3892/etm.2017.4683. PMID:
28781627. PMCID:
PMC5526188.
Article
16. Huang Y, Mao Y, Li H, Shen G, Nan G. 2018; Knockdown of Nrf2 inhibits angiogenesis by downregulating VEGF expression through PI3K/Akt signaling pathway in cerebral microvascular endothelial cells under hypoxic conditions. Biochem Cell Biol. 96:475–482. DOI:
10.1139/bcb-2017-0291. PMID:
29373803.
Article
17. Ren X, Ma H, Zuo Z. 2016; Dexmedetomidine postconditioning reduces brain injury after brain hypoxia-ischemia in neonatal rats. J Neuroimmune Pharmacol. 11:238–247. DOI:
10.1007/s11481-016-9658-9. PMID:
26932203.
Article
18. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY. 2007; Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol. 561:54–62. DOI:
10.1016/j.ejphar.2006.12.028. PMID:
17303117.
Article
19. Rong Z, Pan R, Chang L, Lee W. 2015; Combination treatment with ethyl pyruvate and IGF-I exerts neuroprotective effects against brain injury in a rat model of neonatal hypoxic-ischemic encephalopathy. Int J Mol Med. 36:195–203. DOI:
10.3892/ijmm.2015.2219. PMID:
25999282. PMCID:
PMC4494588.
Article
20. Feng Y, Rhodes PG, Bhatt AJ. 2008; Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats. Pediatr Res. 64:370–374. DOI:
10.1203/PDR.0b013e318180ebe6. PMID:
18535483.
Article
21. Belinga VF, Wu GJ, Yan FL, Limbenga EA. 2016; Splenectomy following MCAO inhibits the TLR4-NF-κB signaling pathway and protects the brain from neurodegeneration in rats. J Neuroimmunol. 293:105–113. DOI:
10.1016/j.jneuroim.2016.03.003. PMID:
27049570.
Article
22. Sundar Dhilip Kumar S, Houreld NN, Abrahamse H. 2018; Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules. 23:835. DOI:
10.3390/molecules23040835. PMID:
29621160. PMCID:
PMC6017430.
Article
23. Yu L, Fan Y, Ye G, Li J, Feng X, Lin K, Dong M, Wang Z. 2015; Curcumin inhibits apoptosis and brain edema induced by hypoxia-hypercapnia brain damage in rat models. Am J Med Sci. 349:521–525. DOI:
10.1097/MAJ.0000000000000457. PMID:
25867253.
Article
24. Wang B, Li W, Jin H, Nie X, Shen H, Li E, Wang W. 2018; Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol. 255:50–57. DOI:
10.1016/j.resp.2018.05.006. PMID:
29758366.
Article
25. Joseph A, Wood T, Chen CC, Corry K, Snyder JM, Juul SE, Parikh P, Nance E. 2018; Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy. Nano Res. 11:5670–5688. DOI:
10.1007/s12274-018-2104-y.
Article
26. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, Deng Y, Zhang Y, Guo X, Mu J, Yu G. 2014; Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res. 39:1322–1331. DOI:
10.1007/s11064-014-1315-1. PMID:
24777807.
Article
27. Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, Wang CS, Feng H, Lin JK. 2014; Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation. 11:59. DOI:
10.1186/1742-2094-11-59. PMID:
24669820. PMCID:
PMC3986937.
Article
28. Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA. 2007; Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res. 29:395–403. DOI:
10.1179/016164107X204729. PMID:
17626736.
Article
29. Chaitanya GV, Cromer WE, Parker CP, Couraud PO, Romero IA, Weksler B, Mathis JM, Minagar A, Alexander JS. 2013; A recombinant inhibitory isoform of vascular endothelial growth factor164/165 aggravates ischemic brain damage in a mouse model of focal cerebral ischemia. Am J Pathol. 183:1010–1024. DOI:
10.1016/j.ajpath.2013.06.009. PMID:
23906811.
Article
30. Baburamani AA, Castillo-Melendez M, Walker DW. 2013; VEGF expression and microvascular responses to severe transient hypoxia in the fetal sheep brain. Pediatr Res. 73:310–316. DOI:
10.1038/pr.2012.191. PMID:
23222909.
Article
31. Sköld MK, Risling M, Holmin S. 2006; Inhibition of vascular endothelial growth factor receptor 2 activity in experimental brain contusions aggravates injury outcome and leads to early increased neuronal and glial degeneration. Eur J Neurosci. 23:21–34. DOI:
10.1111/j.1460-9568.2005.04527.x. PMID:
16420412.
Article
33. Moriyama Y, Takagi N, Hashimura K, Itokawa C, Tanonaka K. 2013; Intravenous injection of neural progenitor cells facilitates angiogenesis after cerebral ischemia. Brain Behav. 3:43–53. DOI:
10.1002/brb3.113. PMID:
23532762. PMCID:
PMC3607146.
Article
34. Pan Z, Zhuang J, Ji C, Cai Z, Liao W, Huang Z. 2018; Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol Lett. 15:4821–4826. DOI:
10.3892/ol.2018.7988. PMID:
29552121. PMCID:
PMC5840714.
Article
35. Lu CW, Hao JL, Yao L, Li HJ, Zhou DD. 2017; Efficacy of curcumin in inducing apoptosis and inhibiting the expression of VEGF in human pterygium fibroblasts. Int J Mol Med. 39:1149–1154. DOI:
10.3892/ijmm.2017.2944. PMID:
28393179. PMCID:
PMC5403353.
Article
36. Li X, Fang Q, Tian X, Wang X, Ao Q, Hou W, Tong H, Fan J, Bai S. 2017; Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Mol Med Rep. 16:4455–4462. DOI:
10.3892/mmr.2017.7169. PMID:
28791384. PMCID:
PMC5647005.
Article
37. Cardona-Gomez GP, Mendez P, Garcia-Segura LM. 2002; Synergistic interaction of estradiol and insulin-like growth factor-I in the activation of PI3K/Akt signaling in the adult rat hypothalamus. Brain Res Mol Brain Res. 107:80–88. DOI:
10.1016/S0169-328X(02)00449-7.
Article
38. Aberg ND, Brywe KG, Isgaard J. 2006; Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. ScientificWorldJournal. 6:53–80. DOI:
10.1100/tsw.2006.22. PMID:
16432628. PMCID:
PMC5917186.
39. Guan J, Mathai S, Liang HP, Gunn AJ. 2013; Insulin-like growth factor-1 and its derivatives: potential pharmaceutical application for treating neurological conditions. Recent Pat CNS Drug Discov. 8:142–160. DOI:
10.2174/1574889811308020004. PMID:
23597305.
Article
40. Sun L, Huang T, Xu W, Sun J, Lv Y, Wang Y. 2017; Advanced glycation end products promote VEGF expression and thus choroidal neovascularization via Cyr61-PI3K/AKT signaling pathway. Sci Rep. 7:14925. DOI:
10.1038/s41598-017-14015-6. PMID:
29097668. PMCID:
PMC5668426.
Article
41. Ye L, Wang X, Cai C, Zeng S, Bai J, Guo K, Fang M, Hu J, Liu H, Zhu L, Liu F, Wang D, Hu Y, Pan S, Li X, Lin L, Lin Z. 2019; FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β-klotho. Exp Neurol. 317:34–50. DOI:
10.1016/j.expneurol.2019.02.013. PMID:
30802446.
Article
42. Luo Z, Zhang M, Niu X, Wu D, Tang J. 2019; Inhibition of the PI3K/Akt signaling pathway impedes the restoration of neurological function following hypoxic-ischemic brain damage in a neonatal rabbit model. J Cell Biochem. 120:10175–10185. DOI:
10.1002/jcb.28302. PMID:
30614032.
Article