1. Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature. 2000; 405:417.
Article
2. Kopylov U, Seidman EG. Diagnostic modalities for the evaluation of small bowel disorders. Curr Opin Gastroenterol. 2015; 31:111–117.
Article
3. Eliakim R. Video capsule endoscopy of the small bowel. Curr Opin Gastroenterol. 2013; 29:133–139.
Article
4. Pennazio M, Spada C, Eliakim R, et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline. Endoscopy. 2015; 47:352–376.
Article
5. ASGE Technology Committee, Wang A, Banerjee S, et al. Wireless capsule endoscopy. Gastrointest Endosc. 2013; 78:805–815.
Article
6. Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol. 2019; 25:1666–1683.
Article
7. Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 2019; 89:25–32.
Article
8. Cho BJ, Bang CS, Park SW, et al. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy. 2019; 51:1121–1129.
Article
9. Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019; 68:1813–1819.
Article
10. McAlindon ME, Ching HL, Yung D, Sidhu R, Koulaouzidis A. Capsule endoscopy of the small bowel. Ann Transl Med. 2016; 4:369.
Article
11. Le Berre C, Sandborn WJ, Aridhi S, et al. Application of artificial Intelligence to gastroenterology and hepatology. Gastroenterology. 2020; 158:76–94.e2.
Article
12. Liu G, Yan G, Kuang S, Wang Y. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Comput Biol Med. 2016; 70:131–138.
Article
13. Li B, Meng MQ. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Trans Inf Technol Biomed. 2012; 16:323–329.
14. Eid A, Charisis VS, Hadjileontiadis LJ, Sergiadis GD. A curvelet-based lacunarity approach for ulcer detection from wireless capsule endoscopy images. In : Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems; 2013 Jun 20-22; Porto, Portugal. Piscataway (NJ): IEEE;2013. 273–278.
Article
15. Yuan Y, Wang J, Li B, Meng MQ. Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Trans Med Imaging. 2015; 34:2046–2057.
Article
16. Tenório JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fátima Marin H. Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease. Int J Med Inform. 2011; 80:793–802.
Article
17. Li B, Meng MQ. Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments. Comput Biol Med. 2009; 39:141–147.
Article
18. Li B, Meng MQ, Xu L. A comparative study of shape features for polyp detection in wireless capsule endoscopy images. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009:3731–3734.
19. Sainju S, Bui FM, Wahid KA. Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J Med Syst. 2014; 38:25.
Article
20. Zhou T, Han G, Li BN, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method. Comput Biol Med. 2017; 85:1–6.
Article
21. Wu X, Chen H, Gan T, Chen J, Ngo CW, Peng Q. Automatic hookworm detection in wireless capsule endoscopy images. IEEE Trans Med Imaging. 2016; 35:1741–1752.
Article
22. Noya F, Alvarez-Gonzalez MA, Benitez R. Automated angiodysplasia detection from wireless capsule endoscopy. Conf Proc IEEE Eng Med Biol Soc. 2017; 2017:3158–3161.
Article
23. Hassan AR, Haque MA. Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Comput Methods Programs Biomed. 2015; 122:341–353.
Article
24. Chao WL, Manickavasagan H, Krishna SG. Application of artificial intelligence in the detection and differentiation of colon polyps: a technical review for physicians. Diagnostics (Basel). 2019; 9:99.
Article
25. Aoki T, Yamada A, Aoyama K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc. 2019; 89:357–363.e2.
Article
26. Aoki T, Yamada A, Aoyama K, et al. Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Dig Endosc. 2020; 32:585–591.
Article
27. Klang E, Barash Y, Margalit RY, et al. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest Endosc. 2020; 91:606–613.e2.
Article
28. Leenhardt R, Vasseur P, Li C, et al. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc. 2019; 89:189–194.
Article
29. Tsuboi A, Oka S, Aoyama K, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig Endosc. 2020; 32:382–390.
Article
30. Aoki T, Yamada A, Kato Y, et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol. 2020; 35:1196–1200.
Article
31. Saito H, Aoki T, Aoyama K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc. 2020; 92:144–151.e1.
Article
32. Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest Endosc. 2014; 80:877–883.
Article
33. Ding Z, Shi H, Zhang H, et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology. 2019; 157:1044–1054.e5.
34. Soffer S, Klang E, Shimon O, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastrointest Endosc. 2020 Apr 22 [Epub].
https://10.1016/j.gie.2020.04.039.
Article
35. Spada C, Pasha SF, Gross SA, et al. Accuracy of first- and second-generation colon capsules in endoscopic detection of colorectal polyps: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2016; 14:1533–1543.e8.
Article
36. Hall B, Holleran G, McNamara D. PillCam COLON 2© as a pan-enteroscopic test in Crohn’s disease. World J Gastrointest Endosc. 2015; 7:1230–1232.
Article
37. Ye CA, Gao YJ, Ge ZZ, et al. PillCam colon capsule endoscopy versus conventional colonoscopy for the detection of severity and extent of ulcerative colitis. J Dig Dis. 2013; 14:117–124.
38. Li Z, Chiu PW. Robotic endoscopy. Visc Med. 2018; 34:45–51.
Article
39. Shamsudhin N, Zverev VI, Keller H, et al. Magnetically guided capsule endoscopy. Med Phys. 2017; 44:e91–e111.
Article
40. Zhao AJ, Qian YY, Sun H, et al. Screening for gastric cancer with magnetically controlled capsule gastroscopy in asymptomatic individuals. Gastrointest Endosc. 2018; 88:466–474.e1.
Article
41. Liao Z, Hou X, Lin-Hu EQ, et al. Accuracy of magnetically controlled capsule endoscopy, compared with conventional gastroscopy, in detection of gastric diseases. Clin Gastroenterol Hepatol. 2016; 14:1266–1273.e1.
42. Ching HL, Hale MF, Kurien M, et al. Diagnostic yield of magnetically assisted capsule endoscopy versus gastroscopy in recurrent and refractory iron deficiency anemia. Endoscopy. 2019; 51:409–418.
Article
43. Beg S, Card T, Warburton S, et al. Diagnosis of Barrett’s esophagus and esophageal varices using a magnetically assisted capsule endoscopy system. Gastrointest Endosc. 2020; 91:773–781.e1.
Article
44. Fontana R, Mulana F, Cavallotti C, et al. An innovative wireless endoscopic capsule with spherical shape. IEEE Trans Biomed Circuits Syst. 2017; 11:143–152.
Article
45. Fu Q, Guo S, Guo J. Conceptual design of a novel magnetically actuated hybrid microrobot. In : 2017 IEEE International Conference on Mechatronics and Automation (ICMA); 2017 Aug 6-9; Takamatsu, Japan. Piscataway (NJ): IEEE;2017. 1001–1005.
Article
46. Guo J, Liu P, Guo S, Wang L, Sun G. Development of a novel wireless spiral capsule robot with modular structure. In : 2017 IEEE International Conference on Mechatronics and Automation (ICMA); 2017 Aug 6-9; Takamatsu, Japan. Piscataway (NJ): IEEE;2017. 439–444.
Article
47. Jang J, Lee J, Lee K, et al. 4-Camera VGA-resolution capsule endoscope with 80Mb/s body-channel communication transceiver and Sub-cm range capsule localization. In : 2018 IEEE International Solid - State Circuits Conference - (ISSCC); 2018 Feb 11-15; San Francisco (CA), USA. Piscataway (NJ): IEEE;2018. 282–284.
Article
48. Demosthenous P, Pitris C, Georgiou J. Infrared fluorescence-based cancer screening capsule for the small intestine. IEEE Trans Biomed Circuits Syst. 2016; 10:467–476.
Article
49. Yim S, Gultepe E, Gracias DH, Sitti M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng. 2014; 61:513–521.
50. Chen W-W, Yan G-Z, Liu H, Jiang P-P, Wang Z-W. Design of micro biopsy device for wireless autonomous endoscope. International Journal of Precision Engineering and Manufacturing. 2014; 15:2317–2325.
Article
51. Son D, Dogan MD, Sitti M. Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy. In : 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017 May 29-Jun 3; Singapore. Piscataway (NJ): IEEE;2017. 1132–1139.
Article
52. Stewart FR, Newton IP, Näthke I, Huang Z, Cox BF, Cochran S. Development of a therapeutic capsule endoscope for treatment in the gastrointestinal tract: bench testing to translational trial. In : 2017 IEEE International Ultrasonics Symposium (IUS); 2017 Sep 6-9; Washington, D.C., USA. Piscataway (NJ): IEEE;2017. 1–4.
Article
53. Leung BHK, Poon CCY, Zhang R, et al. A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect. IEEE Trans Biomed Eng. 2017; 64:1106–1114.
Article