1. Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature. 2000; 405:417.
Article
2. Fisher LR, Hasler WL. New vision in video capsule endoscopy: current status and future directions. Nat Rev Gastroenterol Hepatol. 2012; 9:392–405.
Article
3. Kwack WG, Lim YJ. Current status and research into overcoming limitations of capsule endoscopy. Clin Endosc. 2016; 49:8–15.
Article
4. Szeliski R. Computer vision: algorithms and applications. London: Springer-Verlag;2011.
5. Liedlgruber M, Uhl A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev Biomed Eng. 2011; 4:73–88.
Article
6. Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol. 2015; 12:172–186.
Article
7. Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest Endosc. 2014; 80:877–883.
Article
8. Lv G, Yan G, Wang Z. Bleeding detection in wireless capsule endoscopy images based on color invariants and spatial pyramids using support vector machines. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:6643–6646.
9. Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng. 2011; 58:2777–2786.
Article
10. Pan G, Yan G, Qiu X, Cui J. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J Med Syst. 2011; 35:1477–1484.
Article
11. Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai YH. Automated polyp detection in colon capsule endoscopy. IEEE Trans Med Imaging. 2014; 33:1488–1502.
Article
12. Harris C, Stephens M. A combined corner and edge detector. In : In: Proceedings of the Alvey Vision Conference 1988; 1988 Aug 31-Sep 2; Romsey, UK. Romsey. Roke Manor Research. 1998. p. 147–151.
Article
13. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986; 8:679–698.
Article
14. Lowe DG. Object recognition from local scale-invariant features. In : In: Proceedings of the Seventh IEEE International Conference on Computer Vision; 1999 Sep 20-27; Kerkyra, Greece. Piscataway (NJ). IEEE. 1999. p. 1150–1157.
Article
15. Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (SURF). Comput Vis Image Underst. 2008; 110:346–359.
Article
16. Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. Int J Comput Vis. 2004; 60:63–86.
17. Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell. 2002; 24:509–522.
Article
18. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In : In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05); 2005 Jun 20-25; San Diego (CA), USA. Piscataway (NJ). IEEE. 2005. p. 886–893.
Article
19. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell. 2010; 32:1627–1645.
Article
20. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015; 115:211–252.
Article
21. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In : In: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012 Dec 3-6; Lake Tahoe (NV), USA. Red Hook (NY). Curran Associates, Inc. 2012. p. 1097–1105.
Article
23. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In : In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston (MA), USA. Piscataway (NJ). IEEE. 2015. p. 1–9.
Article
24. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In : In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NJ). IEEE. 2016. p. 770–778.
Article
25. Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology. 2018; 155:1069–1078. e8.
Article
26. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In : In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NJ). IEEE. 2016. p. 779–788.
Article
27. Zou Y, Li L, Wang Y, Yu J, Li Y, Deng WL. Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In : In: 2015 IEEE International Conference on Digital Signal Processing (DSP); 2015 Jul 21-24; Singapore. Piscataway (NJ). IEEE. 2015. p. 1274–1278.
Article
28. Seguí S, Drozdzal M, Pascual G, et al. Generic feature learning for wireless capsule endoscopy analysis. Comput Biol Med. 2016; 79:163–172.
Article
29. Jia X, Meng MQH. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. In : In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016 Aug 16-20; Orlando (FL), USA. Piscataway (NJ). IEEE. 2016. p. 639–642.
Article
30. Li P, Li Z, Gao F, Wan L, Yu J. Convolutional neural networks for intestinal hemorrhage detection in wireless capsule endoscopy images. In : In: 2017 IEEE International Conference on Multimedia and Expo (ICME); 2017 Jul 10-14; Hong Kong, China. Piscataway (NJ). IEEE. 2017. p. 1518–1523.
Article
32. Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys. 2017; 44:1379–1389.
Article
33. He JY, Wu X, Jiang YG, Peng Q, Jain R. Hookworm detection in wireless capsule endoscopy images with deep learning. IEEE Trans Image Process. 2018; 27:2379–2392.
Article
34. Iakovidis DK, Georgakopoulos SV, Vasilakakis M, Koulaouzidis A, Plagianakos VP. Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification. IEEE Trans Med Imaging. 2018; 37:2196–2210.
Article
35. Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis. 2001; 42:145–175.
36. Khan S, Yong SP. A comparison of deep learning and hand crafted features in medical image modality classification. In : In: 2016 3rd International Conference on Computer and Information Sciences (ICCOINS); 2016 Aug 15-17; Kuala Lumpur, Malaysia. Piscataway (NJ). IEEE. 2016. p. 633–638.
Article
37. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002; 24:971–987.
Article
38. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014; 15:1929–1958.
40. Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016; 83:643–649.
Article
41. Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018; 169:357–366.