Tuberc Respir Dis.  2020 Jan;83(1):51-60. 10.4046/trd.2019.0026.

Correlation of PD-L1 Expression Tested by 22C3 and SP263 in Non-Small Cell Lung Cancer and Its Prognostic Effect on EGFR Mutation–Positive Lung Adenocarcinoma

Affiliations
  • 1Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. yschang@yuhs.ac
  • 2Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

Abstract

BACKGROUND
Programmed death-ligand 1 (PD-L1) expression is tested by immunohistochemistry (IHC)"”22C3, SP263, and SP142. The aim of this study is to evaluate the correlation among the three methods of PD-L1 IHC in non-small cell lung cancer (NSCLC) and clinical significance of PD-L1 expression in lung adenocarcinoma with an epidermal growth factor receptor (EGFR)-tyrosine kinase domain mutation.
METHODS
The results of 230 patients who were pathologically confirmed as having NSCLC; tested using PD-L1 IHC 22C3, SP263, and SP142 methods; and evaluated via the peptide nucleic acid clamping method to confirm EGFR mutation, were analyzed in this study.
RESULTS
164 patients underwent both the SP263 and 22C3 tests. There was a significant positive correlation between the outcomes of the two tests (Spearman correlation coefficient=0.912, p<0.001), with a derived regression equation as follows: 22C3=15.2+0.884×SP263 (R2=0.792, p<0.001). There was no relationship between the expression of PD-L1 and clinical parameters, including EGFR-tyrosine kinase inhibitor (TKI) mutation. The PD-L1 expression in patients treated with EGFR-TKI yielded a 2-month-shorter progression period than that in the PD-L1-negative group. However, this did not reach statistical significance (PD-L1<1% vs. PD-L1≥1%, 10 months vs. 8 months).
CONCLUSION
The results of the 22C3 and those of SP263 methods were in good correlation with one another. Since the PD-L1 expression is not influenced by the EGFR mutation, it is necessary to perform a PD-L1 test to set the treatment direction in the patients with EGFR-mutant NSCLC.

Keyword

Non-Small Cell Lung Cancer; PD-L1; Companion Diagnotics; EGFR

MeSH Terms

Adenocarcinoma*
Carcinoma, Non-Small-Cell Lung*
Constriction
Humans
Immunohistochemistry
Lung*
Methods
Phosphotransferases
Receptor, Epidermal Growth Factor
Phosphotransferases
Receptor, Epidermal Growth Factor

Figure

  • Figure 1 Prevalence and correlation of programmed death-ligand 1 (PD-L1) expression using the 22C3 pharmDx, SP263, and SP142 assays. (A) The rate of PD-L1 expression with cutoff tumor proportion score of 1% using the 22C3 pharmDx assay, SP263 assay, and SP142 assay. (B) Scatter diagrams illustrating the correlation between expression levels according to 22C3 pharmDx and SP263 assays, 22C3 pharmDx and SP142 assays (C), and SP263 and SP142 assays (D). (E) PD-L1 expression by 22C3 assay according to epidermal growth factor receptor (EGFR) mutation. IHC: immunohistochemistry; TKI: tyrosine kinase inhibitor.

  • Figure 2 Programmed death-ligand 1 (PD-L1) immunohistochemical (IHC) staining using the PD-L1 IHC 22C3 pharmDx assay (tumor proportion score [TPS] 80%) (A), the PD-L1 IHC SP263 assay (TPS 90%) (B), and the PD-L1 IHC SP142 assay (TC2, 40%; IC0, 0%) (C) (A–C, ×200).

  • Figure 3 Kaplan-Meier curves of progression-free survival (PFS) and overall survival (OS) according to programmed death-ligand 1 (PD-L1) expression status in non-small cell lung cancer patients. The p-value for the difference between the two curves was determined using the log-rank test. (A) PFS for overall population. (B) OS for overall population. (C) PFS for patients treated with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). (D) OS for patients treated with EGFR-TKI.


Reference

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68:394–424. PMID: 30207593.
Article
2. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015; 373:1627–1639. PMID: 26412456.
Article
3. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015; 373:123–135. PMID: 26028407.
Article
4. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015; 372:2018–2028. PMID: 25891174.
Article
5. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015; 372:320–330. PMID: 25399552.
6. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015; 373:23–34. PMID: 26027431.
Article
7. Goss G, Tsai CM, Shepherd FA, Bazhenova L, Lee JS, Chang GC, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016; 17:1643–1652. PMID: 27751847.
Article
8. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015; 348:124–128. PMID: 25765070.
9. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016; 387:1540–1550. PMID: 26712084.
Article
10. Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015; 16:257–265. PMID: 25704439.
Article
11. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016; 387:1837–1846. PMID: 26970723.
Article
12. Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the Blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017; 12:208–222. PMID: 27913228.
Article
13. Marchetti A, Barberis M, Franco R, De Luca G, Pace MV, Staibano S, et al. Multicenter Comparison of 22C3 PharmDx (Agilent) and SP263 (Ventana) assays to test PD-L1 expression for NSCLC patients to be treated with immune checkpoint inhibitors. J Thorac Oncol. 2017; 12:1654–1663. PMID: 28818609.
Article
14. Roach C, Zhang N, Corigliano E, Jansson M, Toland G, Ponto G, et al. Development of a companion diagnostic PD-L1 immunohistochemistry assay for pembrolizumab therapy in non-small-cell lung cancer. Appl Immunohistochem Mol Morphol. 2016; 24:392–397. PMID: 27333219.
Article
15. Kim HJ, Lee KY, Kim YC, Kim KS, Lee SY, Jang TW, et al. Detection and comparison of peptide nucleic acid-mediated real-time polymerase chain reaction clamping and direct gene sequencing for epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Lung Cancer. 2012; 75:321–325. PMID: 21930325.
Article
16. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005; 97:339–346. PMID: 15741570.
Article
17. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, et al. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res. 2019; 25:1063–1069. PMID: 30045933.
Article
18. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011; 28:682–688. PMID: 20373055.
Article
19. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016; 375:1823–1833. PMID: 27718847.
Article
20. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 2014; 25:1935–1940. PMID: 25009014.
Article
21. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013; 3:1355–1363. PMID: 24078774.
Article
22. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015; 10:910–923. PMID: 25658629.
Article
23. Tang Y, Fang W, Zhang Y, Hong S, Kang S, Yan Y, et al. The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget. 2015; 6:14209–14219. PMID: 25895031.
Article
24. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, et al. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther. 2014; 7:567–573. PMID: 24748806.
Article
25. Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W, et al. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biol Ther. 2016; 17:407–413. PMID: 26954523.
Article
26. Lin C, Chen X, Li M, Liu J, Qi X, Yang W, et al. Programmed death-ligand 1 expression predicts tyrosine kinase inhibitor response and better prognosis in a cohort of patients with epidermal growth factor receptor mutation-positive lung adenocarcinoma. Clin Lung Cancer. 2015; 16:e25–e35. PMID: 25801750.
Article
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr