Int J Stem Cells.  2019 Nov;12(3):381-387. 10.15283/ijsc19048.

Adult Stem Cells in Hibernation: Future Perspectives of Space Travel

Affiliations
  • 1Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Taiwan.
  • 2Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan. kotungc@mail.npust.edu.tw
  • 3Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Taiwan.
  • 4Research Center for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Taiwan.

Abstract

Space traveling is imperative for mankind in the future. Expectedly, hibernation will become an option for space traveler to overcome the endless voyage. With regard to some of the studies pointed out that during hibernation, muscle will undergo atrophy and meantime neurogenesis will reduce, these obstacles were frequently related with stem cell regeneration. Thus, investigation on whether hibernation will lead to dysfunction of stem cell becomes an important issue. By going through four main systems in this article, such as, hematopoietic system, skeletal muscle system, central nervous system and orthopedic system, we are expecting that stem cells regeneration capacity will be affected by hibernation. To date, these researches are majorly the read-out from short term or seasonal hibernating mammals. Proposing and creating a simulated long-term hibernation animal model is turning essential for the further investigation on the effect of longer period of hibernation to human stem cells.

Keyword

Stem cell; Hibernation; Torpor; Arousal

MeSH Terms

Adult Stem Cells*
Adult*
Arousal
Atrophy
Central Nervous System
Hematopoietic System
Hibernation*
Humans
Mammals
Models, Animal
Muscle, Skeletal
Neurogenesis
Orthopedics
Regeneration
Seasons
Stem Cells
Torpor

Reference

References

1. Morris DZ. Elon Musk says SpaceX’s Mars rocket could launch in early 2019 [Internet]. Fortune;2018. Mar. 11. [cited 2018 Jun 13]. Available from: http://fortune.com/2018/03/11/elon-musk-spacex-mars-rocket-bfr-launch-timeline/.
2. The Editors of Encyclopaedia Britannica. Hibernation [Internet]. Chicago: Encyclopædia Britannica;2018. Jan. 5. [cited 2018 Jun 12]. Available from: https://www.britannica.com/science/hibernation.
3. Storey KB. Out cold: biochemical regulation of mammalian hibernation - a mini-review. Gerontology. 2010; 56:220–230. DOI: 10.1159/000228829. PMID: 19602865.
Article
4. Sahdo B, Evans AL, Arnemo JM, Fröbert O, Särndahl E, Blanc S. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? Int J Med Sci. 2013; 10:508–514. DOI: 10.7150/ijms.4476. PMID: 23532623. PMCID: PMC3607235.
Article
5. Andres-Mateos E, Mejias R, Soleimani A, Lin BM, Burks TN, Marx R, Lin B, Zellars RC, Zhang Y, Huso DL, Marr TG, Leinwand LA, Merriman DK, Cohn RD. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One. 2012; 7:e48884. DOI: 10.1371/journal.pone.0048884. PMID: 23155423. PMCID: PMC3498346.
Article
6. Brooks NE, Myburgh KH, Storey KB. Muscle satellite cells increase during hibernation in ground squirrels. Comp Biochem Physiol B Biochem Mol Biol. 2015; 189:55–61. DOI: 10.1016/j.cbpb.2015.07.006. PMID: 26219581.
Article
7. Arant RJ, Goo MS, Gill PD, Nguyen Y, Watson KD, Hamilton JS, Horowitz JM, Horwitz BA. Decreasing temperature shifts hippocampal function from memory formation to modulation of hibernation bout duration in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol. 2011; 301:R438–R447. DOI: 10.1152/ajpregu.00016.2011. PMID: 21562095.
Article
8. Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development. 2014; 141:4656–4666. DOI: 10.1242/dev.106575. PMID: 25468935.
Article
9. Pietras EM, Warr MR, Passegué E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011; 195:709–720. DOI: 10.1083/jcb.201102131. PMID: 22123859. PMCID: PMC3257565.
Article
10. Yamazaki S, Nakauchi H. Bone marrow Schwann cells induce hematopoietic stem cell hibernation. Int J Hematol. 2014; 99:695–698. DOI: 10.1007/s12185-014-1588-9. PMID: 24817152.
Article
11. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H, Nakauchi H. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 2006; 25:3515–3523. DOI: 10.1038/sj.emboj.7601236. PMID: 16858398. PMCID: PMC1538571.
Article
12. Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009; 113:1250–1256. DOI: 10.1182/blood-2008-04-146480. PMID: 18945958.
Article
13. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A. 1999; 96:3120–3125. DOI: 10.1073/pnas.96.6.3120. PMID: 10077647. PMCID: PMC15905.
Article
14. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004; 118:149–161. DOI: 10.1016/j.cell.2004.07.004. PMID: 15260986.
Article
15. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T. Thrombopoietin/ MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007; 1:685–697. DOI: 10.1016/j.stem.2007.10.020. PMID: 18371409.
Article
16. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011; 147:1146–1158. DOI: 10.1016/j.cell.2011.09.053. PMID: 22118468.
Article
17. Brooks NE, Myburgh KH, Storey KB. Myostatin levels in skeletal muscle of hibernating ground squirrels. J Exp Biol. 2011; 214(Pt 15):2522–2527. DOI: 10.1242/jeb.055764. PMID: 21753045. PMCID: PMC3135390.
Article
18. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K, Cohn RD, Barton ER. Regulation of muscle mass by follistatin and activins. Mol Endocrinol. 2010; 24:1998–2008. DOI: 10.1210/me.2010-0127. PMID: 20810712. PMCID: PMC2954636.
Article
19. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000; 151:1221–1234. DOI: 10.1083/jcb.151.6.1221. PMID: 11121437. PMCID: PMC2190588.
Article
20. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol. 1999; 210:440–455. DOI: 10.1006/dbio.1999.9284. PMID: 10357902. PMCID: PMC5027208.
Article
21. Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D, Patel K. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci. 2008; 121(Pt 17):2939–2950. DOI: 10.1242/jcs.026534. PMID: 18697834.
Article
22. Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F. Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol. 2011; 300:C1122–C1138. DOI: 10.1152/ajpcell.00214.2010. PMID: 21248078.
Article
23. Abiola M, Favier M, Christodoulou-Vafeiadou E, Pichard AL, Martelly I, Guillet-Deniau I. Activation of Wnt/beta-catenin signaling increases insulin sensitivity through a reciprocal regulation of Wnt10b and SREBP-1c in skeletal muscle cells. PLoS One. 2009; 4:e8509. DOI: 10.1371/journal.pone.0008509. PMID: 20041157. PMCID: PMC2794543.
24. Edlow BL, Takahashi E, Wu O, Benner T, Dai G, Bu L, Grant PE, Greer DM, Greenberg SM, Kinney HC, Folkerth RD. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012; 71:531–546. DOI: 10.1097/NEN.0b013e3182588293. PMID: 22592840. PMCID: PMC3387430.
Article
25. León-Espinosa G, García E, Gómez-Pinedo U, Hernández F, DeFelipe J, Ávila J. Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience. 2016; 333:181–192. DOI: 10.1016/j.neuroscience.2016.07.016. PMID: 27436535.
Article
26. Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016; 167:897–914. DOI: 10.1016/j.cell.2016.10.021. PMID: 27814520.
Article
27. Arfat Y, Xiao WZ, Iftikhar S, Zhao F, Li DJ, Sun YL, Zhang G, Shang P, Qian AR. Physiological effects of microgravity on bone cells. Calcif Tissue Int. 2014; 94:569–579. DOI: 10.1007/s00223-014-9851-x. PMID: 24687524.
Article
28. Vico L, Alexandre C. Microgravity and bone adaptation at the tissue level. J Bone Miner Res. 1992; 7(Suppl 2):S445–S447. DOI: 10.1002/jbmr.5650071415. PMID: 1485555.
Article
29. McGee-Lawrence ME, Wojda SJ, Barlow LN, Drummer TD, Castillo AB, Kennedy O, Condon KW, Auger J, Black HL, Nelson OL, Robbins CT, Donahue SW. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation). Bone. 2009; 45:1186–1191. DOI: 10.1016/j.bone.2009.08.011. PMID: 19703606. PMCID: PMC2783552.
Article
30. McGee-Lawrence ME, Wojda SJ, Barlow LN, Drummer TD, Bunnell K, Auger J, Black HL, Donahue SW. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs. J Biomech. 2009; 42:1378–1383. DOI: 10.1016/j.jbiomech.2008.11.039. PMID: 19450804. PMCID: PMC2707508.
Article
31. McGee-Lawrence M, Buckendahl P, Carpenter C, Henriksen K, Vaughan M, Donahue S. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation. J Exp Biol. 2015; 218(Pt 13):2067–2074. DOI: 10.1242/jeb.120725. PMID: 26157160. PMCID: PMC4510842.
Article
32. Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, Rittweger J, Felsenberg D, Matsumoto T, Nakamura T. Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res. 2004; 19:1771–1778. DOI: 10.1359/JBMR.040811. PMID: 15476576.
Article
33. Cazzaniga A, Maier JAM, Castiglioni S. Impact of simulated microgravity on human bone stem cells: new hints for space medicine. Biochem Biophys Res Commun. 2016; 473:181–186. DOI: 10.1016/j.bbrc.2016.03.075. PMID: 27005819.
Article
34. Zhang DZ, Gai LY, Liu HW. Differences between adipose-derived stem cells and mesenchymal stem cells in differentiation into cardiomyocytes. Sheng Li Xue Bao. 2008; 60:341–347. Chinese. PMID: 18560724.
35. Fink T, Rasmussen JG, Emmersen J, Pilgaard L, Fahlman Å, Brunberg S, Josefsson J, Arnemo JM, Zachar V, Swenson JE, Fröbert O. Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro. Stem Cell Res. 2011; 7:89–95. DOI: 10.1016/j.scr.2011.03.003. PMID: 21497574.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr