Anesth Pain Med.  2019 Oct;14(4):441-448. 10.17085/apm.2019.14.4.441.

Current use of neuromuscular blocking agents and antagonists in Korea: a 2018 survey

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Gangneung Asan Medical Center, University of Ulsan College of Medicine, Gangneung, Korea.
  • 2Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
  • 3Department of Anesthesiology and Pain Medicine, Konyang University Hopsital, Konyang University College of Medicine, Daejeon, Korea.
  • 4Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
  • 5Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea.
  • 6Department of Anesthesiology and Pain Medicine, Daejeon Sun General Hospital, Daejeon, Korea. hsyang@amc.seoul.kr

Abstract

BACKGROUND
Neuromuscular blocking agents (NMBAs) and neuromuscular monitoring in anesthetic management are integral for endotracheal intubation, better visualization of the surgical field, and prevention of residual neuromuscular blockade and pulmonary complications. Sugammadex is a drug that reduces risk of residual neuromuscular blockade, with more rapid recovery compared to anticholinesterase. The purpose of this study was to investigate current usage status of NMBAs and antagonist with neuromuscular monitoring, among anesthesiologists in Korea.
METHODS
Anesthesiologists working in Korea were invited to participate in an online survey via email January 2-February 28, 2018. The questionnaire consisted of 45 items, including preferred NMBAs, antagonists, neuromuscular monitoring, and complications related to the use sugammadex. A total of 174 responses were analyzed.
RESULTS
Rocuronium was a commonly used NMBA for endotracheal intubation (98%) of hospitals, and maintenance of anesthesia (83.3%) in of hospitals. Sugammadex, pyridostigmine, and neostigmine were used in 89.1%, 87.9%, and 45.4% of hospitals. Neuromuscular monitoring was employed in 79.3% of hospitals; however only 39.7% of hospitals used neuromuscular monitoring before antagonist administration. Usual dosage range of sugammadex was 2.1-4 mg/kg in 35.1% of hospitals, within 2 mg/kg in 34.5% of hospitals, and 1 vial regardless of body weight in 22.4% of hospitals. Sugammadex-related complications were encountered by 14.9% of respondents.
CONCLUSIONS
This survey indicates several minor problems associated with the use of antagonists and neuromuscular monitoring. However, most anesthesiologists appear to have appropriate information regarding the usage of NMBAs and sugammadex.

Keyword

Neostigmine; Neuromuscular blocking agents; Neuromuscular monitoring; Pyridostigmine bromide; Sugammadex

MeSH Terms

Anesthesia
Body Weight
Delayed Emergence from Anesthesia
Electronic Mail
Intubation, Intratracheal
Korea*
Neostigmine
Neuromuscular Blockade*
Neuromuscular Blocking Agents*
Neuromuscular Monitoring
Pyridostigmine Bromide
Surveys and Questionnaires
Neostigmine
Neuromuscular Blocking Agents
Pyridostigmine Bromide

Reference

1. Madsen MV, Staehr-Rye AK, Claudius C, Gätke MR. Is deep neuromuscular blockade beneficial in laparoscopic surgery?Yes, probably. Acta Anaesthesiol Scand. 2016; 60:710–6. DOI: 10.1111/aas.12698. PMID: 26864853.
2. Meakin GH. Role of muscle relaxants in pediatric anesthesia. Curr Opin Anaesthesiol. 2007; 20:227–31. DOI: 10.1097/ACO.0b013e328108f430. PMID: 17479026.
3. Dubois PE, Mulier JP. A review of the interest of sugammadex for deep neuromuscular blockade management in Belgium. Acta Anaesthesiol Belg. 2013; 64:49–60. PMID: 24191526.
4. Lee C, Katz RL. Clinical implications of new neuromuscular concepts and agents:so long, neostigmine!So long, sux! J Crit Care. 2009; 24:43–9. DOI: 10.1016/j.jcrc.2008.08.009. PMID: 19272538.
5. Naguib M, Brull SJ, Arkes HR. Reasoning of an anomaly:residual block after sugammadex. Anesth Analg. 2013; 117:297–300. DOI: 10.1213/ANE.0b013e318292ee3c. PMID: 23881373.
6. Yang LP, Keam SJ. Sugammadex:a review of its use in anaesthetic practice. Drugs. 2009; 69:919–42. DOI: 10.2165/00003495-200969070-00008. PMID: 19441874.
7. Cho CK, Kim DK, Park HJ. Current supply and future workforce projections of anesthesiologists for safe anesthetic care of the Korean population. Anesth Pain Med. 2016; 11:85–90. DOI: 10.17085/apm.2016.11.1.85.
8. Haerter F, Eikermann M. Reversing neuromuscular blockade:inhibitors of the acetylcholinesterase versus the encapsulating agents sugammadex and calabadion. Expert Opin Pharmacother. 2016; 17:819–33. DOI: 10.1517/14656566.2016.1145667. PMID: 26799963.
9. de Boer HD. Neuromuscular transmission:new concepts and agents. J Crit Care. 2009; 24:36–42. DOI: 10.1016/j.jcrc.2008.08.004. PMID: 19272537.
10. Meistelman C, Donati F. Do we really need sugammadex as an antagonist of muscle relaxants in anesthesia? Curr Opin Anaesthesiol. 2016; 29:462–7. DOI: 10.1097/ACO.0000000000000359. PMID: 27168088.
11. Seo HJ, Lee YK, Lee SS, Kim KS, Yang HS. A survey of postoperative residual neuromuscular block and neuromuscular monitoring. Anesth Pain Med. 2010; 5:70–4.
12. Mirakhur RK, Lavery TD, Briggs LP, Clarke RS. Effects of neostigmine and pyridostigmine on serum cholinesterase activity. Can Anaesth Soc J. 1982; 29:55–8. DOI: 10.1007/BF03007949. PMID: 7055744.
13. Donati F, McCarroll SM, Antzaka C, McCready D, Bevan DR. Dose-response curves for edrophonium, neostigmine, and pyridostigmine after pancuronium and d-tubocurarine. Anesthesiology. 1987; 66:471–6. DOI: 10.1097/00000542-198704000-00004. PMID: 3565812.
14. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010; 111:110–9. DOI: 10.1213/ANE.0b013e3181c07428. PMID: 19910616.
15. McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eiker-mann M. Dose-dependent association between intermediateacting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology. 2015; 122:1201–13. DOI: 10.1097/ALN.0000000000000674. PMID: 25919486.
16. Bartkowski RR. Incomplete reversal of pancuronium neuromuscular blockade by neostigmine, pyridostigmine, and edrophonium. Anesth Analg. 1987; 66:594–8. DOI: 10.1213/00000539-198707000-00002. PMID: 3605668.
17. Eleveld DJ, Kuizenga K, Proost JH, Wierda JM. A temporary decrease in twitch response during reversal of rocuroniuminduced muscle relaxation with a small dose of sugammadex. Anesth Analg. 2007; 104:582–4. DOI: 10.1213/01.ane.0000250617.79166.7f. PMID: 17312212.
18. Kaufhold N, Schaller SJ, Stäuble CG, Baumüller E, Ulm K, Blob-ner M, et al. Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20). Br J Anaesth. 2016; 116:233–40. DOI: 10.1093/bja/aev437. PMID: 26787792.
19. Lee HJ, Kim KS, Kim TY, Lee JH, Jeong M. The use of 3 sugammadex out of 5 reversal of during recovery of rocuronium-induced neuromuscular blockade in a patient with post-tonsillectomy hemorrhage:a case report. Korean J Anesthesiol. 2014; 67:43–7. DOI: 10.4097/kjae.2014.67.1.43. PMID: 25097738. PMCID: PMC4121494.
20. Cammu G, de Kam PJ, De Graeve K, van den Heuvel M, Suy K, Morias K, et al. Repeat dosing of rocuronium 1.2 mg kg-1 after reversal of neuromuscular block by sugammadex 4.0 mg kg-1 in anaesthetized healthy volunteers:a modelling-based pilot study. Br J Anaesth. 2010; 105:487–92. DOI: 10.1093/bja/aeq167. PMID: 20630888.
21. Paton WD, Waud DR. The margin of safety of neuromuscular transmission. J Physiol. 1967; 191:59–90. DOI: 10.1113/jphysiol.1967.sp008237. PMID: 4292958. PMCID: PMC1365439.
22. Takkunen O, Salmenperä M, Heinonen J. Atropine vs glycopyrrolate during reversal of pancuronium block in patients anaesthetized with halothane. Acta Anaesthesiol Scand. 1984; 28:377–80. DOI: 10.1111/j.1399-6576.1984.tb02080.x. PMID: 6485732.
23. Mirakhur RK, Briggs LP, Clarke RS, Dundee JW, Johnston HM. Comparison of atropine and glycopyrrolate in a mixture with pyridostigmine for the antagonism of neuromuscular block. Br J Anaesth. 1981; 53:1315–20. DOI: 10.1093/bja/53.12.1315. PMID: 7317249.
24. Ortega R, Brull SJ, Prielipp R, Gutierrez A, De La Cruz R, Conley CM. Monitoring neuromuscular function. N Engl J Med. 2018; 378:6. DOI: 10.1056/NEJMvcm1603741. PMID: 29365307.
25. Kotake Y, Ochiai R, Suzuki T, Ogawa S, Takagi S, Ozaki M, et al. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg. 2013; 117:345–51. DOI: 10.1213/ANE.0b013e3182999672. PMID: 23757472.
26. Duţu M, Ivaşcu R, Tudorache O, Morlova D, Stanca A, Negoiţă S, et al. Neuromuscular monitoring:an update. Rom J Anaesth Intensive Care. 2018; 25:55–60.
27. Cammu G. Sugammadex:appropriate use in the context of budgetary constraints. Curr Anesthesiol Rep. 2018; 8:178–85. DOI: 10.1007/s40140-018-0265-6. PMID: 29904285. PMCID: PMC5988778.
28. Iwasaki H, Renew JR, Kunisawa T, Brull SJ. Preparing for the unexpected:special considerations and complications after sugammadex administration. BMC Anesthesiol. 2017; 17:140. DOI: 10.1186/s12871-017-0429-9. PMID: 29041919. PMCID: PMC5645926.
29. Hunter JM, Naguib M. Sugammadex-induced bradycardia and asystole:how great is the risk? Br J Anaesth. 2018; 121:8–12. DOI: 10.1016/j.bja.2018.03.003. PMID: 29935599.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr