Tuberc Respir Dis.  2019 Apr;82(2):143-150. 10.4046/trd.2018.0027.

Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance

Affiliations
  • 1Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. shimts@amc.seoul.kr

Abstract

BACKGROUND
The purpose of this study was to analyze the relationship between the gene mutation patterns by the GenoType MTBDRplus (MTBDRplus) assay and the phenotypic drug susceptibility test (pDST) results of isoniazid (INH) and prothionamide (Pto).
METHODS
A total of 206 patients whose MTBDRplus assay results revealed katG or inhA mutations were enrolled in the study. The pDST results were compared to mutation patterns on the MTBDRplus assay.
RESULTS
The katG and inhA mutations were identified in 68.0% and 35.0% of patients, respectively. Among the 134 isolated katG mutations, three (2.2%), 127 (94.8%) and 11 (8.2%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Among the 66 isolated inhA mutations, 34 (51.5%), 18 (27.3%) and 21 (31.8%) were phenotypically resistant to low-level INH, high-level INH, and Pto, respectively. Of the 34 phenotypic Pto resistant isolates, 21 (61.8%), 11 (32.4%), and two (5.9%) had inhA, katG, and both gene mutations.
CONCLUSION
It is noted that Pto may still be selected as one of the appropriate multidrug-resistant tuberculosis regimen, although inhA mutation is detected by the MTBDRplus assay until pDST confirms a Pto resistance. The reporting of detailed mutation patterns of the MTBDRplus assay may be important for clinical practice, rather than simply presenting resistance or susceptibility test results.

Keyword

katG Protein; InhA Protein; Isoniazid; Prothionamide; Genotype; Biological Assay; Disease Susceptibility; Research Design; Mycobacterium tuberculosis; Mycobacterium

MeSH Terms

Biological Assay
Disease Susceptibility
Genotype*
Humans
Isoniazid*
Mycobacterium
Mycobacterium tuberculosis
Prothionamide*
Research Design
Tuberculosis, Multidrug-Resistant
Isoniazid
Prothionamide

Reference

1. World Health Organization. Global tuberculosis report 2016.WHO/HTM/TB/2016.13. Geneva: World Health Organization;2016.
2. Bai GH, Park YK, Choi YW, Bai JI, Kim HJ, Chang CL, et al. Trend of anti-tuberculosis drug resistance in Korea, 1994-2004. Int J Tuberc Lung Dis. 2007; 11:571–576. PMID: 17439684.
3. Korea Centers for Disease Control and Prevention. Annual report on the notified tuberculosis in Korea, 2016. Cheongju: Korea Centers for Disease Control and Prevention;2016.
4. Korea Centers for Disease Control and Prevention. Korean guidelines for tuberculosis third edition, 2017. Cheongju: Korea Centers for Disease Control and Prevention;2017.
5. World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. WHO/HTM/TB/2016.04. Geneva: World Health Organization;2016.
6. Leylabadlo HE, Kafil HS, Yousefi M, Aghazadeh M, Asgharzadeh M. Pulmonary tuberculosis diagnosis: where we are? Tuberc Respir Dis. 2016; 79:134–142.
Article
7. Rouse DA, Li Z, Bai GH, Morris SL. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995; 39:2472–2477. PMID: 8585728.
8. Guo H, Seet Q, Denkin S, Parsons L, Zhang Y. Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA. J Med Microbiol. 2006; 55(Pt 11):1527–1531. PMID: 17030912.
9. Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis : a systematic review. PLoS One. 2015; 10:e0119628. PMID: 25799046.
10. Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low- and high-level resistance. J Clin Microbiol. 2006; 44:3659–3664. PMID: 17021094.
11. Gali N, Dominguez J, Blanco S, Prat C, Alcaide F, Coll P, et al. Use of a mycobacteriophage-based assay for rapid assessment of susceptibilities of Mycobacterium tuberculosis isolates to isoniazid and influence of resistance level on assay performance. J Clin Microbiol. 2006; 44:201–205. PMID: 16390970.
12. Lavender C, Globan M, Sievers A, Billman-Jacobe H, Fyfe J. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia. Antimicrob Agents Chemother. 2005; 49:4068–4074. PMID: 16189082.
13. Morlock GP, Metchock B, Sikes D, Crawford JT, Cooksey RC. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2003; 47:3799–3805. PMID: 14638486.
14. Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, Locht C, et al. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol Microbiol. 2004; 51:175–188. PMID: 14651620.
Article
15. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994; 263:227–230. PMID: 8284673.
16. Lee H, Cho SN, Bang HE, Lee JH, Bai GH, Kim SJ, et al. Exclusive mutations related to isoniazid and ethionamide resistance among Mycobacterium tuberculosis isolates from Korea. Int J Tuberc Lung Dis. 2000; 4:441–447. PMID: 10815738.
17. Lin SY, Desmond E, Bonato D, Gross W, Siddiqi S. Multicenter evaluation of Bactec MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex. J Clin Microbiol. 2009; 47:3630–3634. PMID: 19741086.
18. Unissa AN, Selvakumar N, Narayanan S, Suganthi C, Hanna LE. Investigation of Ser315 substitutions within katG gene in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from south India. Biomed Res Int. 2015; 2015:257983. PMID: 25699262.
19. van Doorn HR, de Haas PE, Kremer K, Vandenbroucke-Grauls CM, Borgdorff MW, van Soolingen D. Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at amino-acid position 315 of katG: a decade of experience in The Netherlands. Clin Microbiol Infect. 2006; 12:769–775. PMID: 16842572.
20. Gagneux S, Burgos MV, DeRiemer K, Encisco A, Munoz S, Hopewell PC, et al. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog. 2006; 2:e61. PMID: 16789833.
21. Mokrousov I, Narvskaya O, Otten T, Limeschenko E, Steklova L, Vyshnevskiy B. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob Agents Chemother. 2002; 46:1417–1424. PMID: 11959577.
22. Vilcheze C, Jacobs WR Jr. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr. 2014; 2:MGM2-0014-2013.
Article
23. Lei B, Wei CJ, Tu SC. Action mechanism of antitubercular isoniazid: activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inha inhibitor. J Biol Chem. 2000; 275:2520–2526. PMID: 10644708.
24. Vannelli TA, Dykman A, Ortiz de Montellano PR. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem. 2002; 277:12824–12829. PMID: 11823459.
Article
25. Machado D, Perdigao J, Ramos J, Couto I, Portugal I, Ritter C, et al. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J Antimicrob Chemother. 2013; 68:1728–1732. PMID: 23539241.
26. Larsen MH, Vilcheze C, Kremer L, Besra GS, Parsons L, Salfinger M, et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol. 2002; 46:453–466. PMID: 12406221.
27. Vilcheze C, Weisbrod TR, Chen B, Kremer L, Hazbon MH, Wang F, et al. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother. 2005; 49:708–720. PMID: 15673755.
28. Cardoso RF, Cardoso MA, Leite CQ, Sato DN, Mamizuka EM, Hirata RD, et al. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil. Mem Inst Oswaldo Cruz. 2007; 102:59–61. PMID: 17294000.
29. Niehaus AJ, Mlisana K, Gandhi NR, Mathema B, Brust JC. High prevalence of inhA promoter mutations among patients with drug-resistant tuberculosis in KwaZulu-Natal, South Africa. PLoS One. 2015; 10:e0135003. PMID: 26332235.
30. Rueda J, Realpe T, Mejia GI, Zapata E, Rozo JC, Ferro BE, et al. Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2015; 59:7805–7810. PMID: 26369965.
31. Tan Y, Su B, Zheng H, Song Y, Wang Y, Pang Y. Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in southern China. Front Microbiol. 2017; 8:2358. PMID: 29250048.
Article
32. Han SB, Jo Y, Yu JK, Kim Y, Park YJ. Performance assessment of Advansure MDR-TB Genoblot Assay Kit for anti-tuberculosis drug susceptibility test. Lab Med Online. 2012; 2:34–40.
Article
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr