Nat Prod Sci.  2019 Jun;25(2):115-121. 10.20307/nps.2019.25.2.115.

Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity

Affiliations
  • 1Laboratoire de Biochimie Appliquée, Département des Sciences de la Nature et de la Vie, Université Frères Mentouri-Constantine 1; 25000 Constantine, Algeria. rym.demmak@umc.edu.dz
  • 2Laboratoire de Pharmacognosie, Univ. Lille, EA 7394 – ICV – Institut Charles Viollette; F-59000 Lille, France.
  • 3Laboratoire d'Obtention des Substances Thérapeutiques (LOST), Campus Chaabet-Ersas, Département de chimie, Université des Frères Mentouri-Constantine; 25000 Constantine, Algeria.

Abstract

Alzheimer's disease is a chronic neurodegenerative disorder with no curative treatment. The commercially available drugs, which target acetylcholinesterase, are not satisfactory. The aim of this study was to investigate the cholinesterase inhibitory activity of Solenostemma argel aerial part. Eight compounds were isolated and identified by NMR: kaempferol-3-O-glucopyranoside (1), kaempferol (2), kaempferol-3-glucopyranosyl(1→6)rhamnopyranose (3) p-hydroxybenzoic acid (4), dehydrovomifoliol (5), 14,15-dihydroxypregn-4-ene-3,20-dione (6), 14,15-dihydroxy-pregn-4-ene-3,20-dione-15β-D-glucopyranoside (7) and solargin I (8). Two of them (compounds 2 and 3) could inhibit over 50 % of butyrylcholinesterase activity at 100 µM. Compound (2) displayed the highest inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with a slight selectivity towards the latter. Molecular docking studies supported the in vitro results and revealed that (2) had made several hydrogen and Ï€-Ï€ stacking interactions which could explain the compound potency to inhibit AChE and BChE.

Keyword

Alzheimer's disease; Cholinesterase; Molecular docking; Solenostemma argel

MeSH Terms

Acetylcholinesterase
Alzheimer Disease
Butyrylcholinesterase
Cholinesterases*
Hydrogen
In Vitro Techniques
Neurodegenerative Diseases
Acetylcholinesterase
Butyrylcholinesterase
Cholinesterases
Hydrogen

Figure

  • Fig. 1 Bioautography showing the inhibition of acetylcholinesterase activity.

  • Fig. 2 Structures of compounds 1 - 8 isolated from Solenostemma argel.

  • Fig. 3 Binding mode prediction of compound 2 into the entire AChE (A) and BChE (B) active pocket. Purple arrows head from the donor to the acceptor of hydrogen bonds and green lines π-π stackings. The gray circle dimensions are proportional to the accessibility to the solvent.


Reference

1. Machado LP, Carvalho LR, Young MCM, Cardoso-Lopes EM, Centeno DC, Zambotti-Villela L, Colepicolo P, Yokoya NS. Rev Bras Farmacogn. 2015; 25:657–662.
2. Orhan IE, Orhan G, Gurkas E. Mini Rev Med Chem. 2011; 11:836–842.
3. Zemek F, Drtinova L, Nepovimova E, Sepsova V, Korabecny J, Klimes J, Kuca K. Expert Opin Drug Saf. 2014; 13:759–774.
4. Lee KY, Sung SH, Kim YC. Helv Chim Acta. 2003; 86:474–483.
5. Kamel MS, Ohtani K, Hasanain HA, Mohamed MH, Kasai R, Yamasaki K. Phytochemistry. 2000; 53:937–940.
6. Ounaissia K, Pertuit D, Mitaine-Offer AC, Miyamoto T, Tanaka C, Delemasure S, Dutartre P, Smati D, Lacaille-Dubois MA. Fitoterapia. 2016; 114:98–104.
7. Shafek RE, Shafik NH, Michael HN. Asian J Plant Sci. 2012; 11:143–147.
8. Yang Z, Zhang X, Duan D, Song Z, Yang M, Li SJ. Sep Sci. 2009; 32:3257–3259.
9. Plaza A, Perrone A, Balestrieri C, Balestrieri ML, Bifulco G, Carbone V, Hamed A, Pizza C, Piacente S. Tetrahedron. 2005; 61:7470–7480.
10. Ibrahim ME, Ahmed SS, El-Sawi SA, Khalid KA. J Essent Oil Bear Pl. 2014; 17:629–632.
11. Di Giovanni S, Borloz A, Urbain A, Marston A, Hostettmann K, Carrupt PA, Reist M. Eur J Pharm Sci. 2008; 33:109–119.
12. Cheung J, Gary EN, Shiomi K, Rosenberry TL. ACS Med Chem Lett. 2013; 4:1091–1096.
13. Wandhammer M, Carletti E, Van Der Schans M, Gillon E, Nicolet Y, Masson P, Goeldner M, Noort D, Nachon F. J Biol Chem. 2011; 286:16783–16789.
14. Humphrey W, Dalke A, Schulten K. J Mol Graph. 1996; 14:33–38.
15. Schrödinger L. Schrödinger Release 2015-1: Maestro (version 10.1). N.Y.: 2015.
16. Lobbens ES, Vissing KJ, Jorgensen L, van de Weert M, Jäger AK. J Ethnopharmacol. 2017; 200:66–73.
17. Wei Y, Xie Q, Fisher D, Sutherland IA. J Chromatogr A. 2011; 1218:6206–6211.
18. Park JS, Rho HS, Kim DH, Chang IS. J Agric Food Chem. 2006; 54:2951–2956.
19. Budzianowski J. Phytochemistry. 1990; 29:3643–3647.
20. Cho JY, Moon JH, Seong KY, Park KH. Biosci Biotechnol Biochem. 1998; 62:2273–2276.
21. Schievano E, Stocchero M, Morelato E, Facchin C, Mammi S. Metabolomic. 2012; 8:679–690.
22. Kamel MS. Phytochemistry. 2003; 62:1247–1250.
23. Jung HA, Jung YJ, Hyun SK, Min BS, Kim DW, Jung JH, Choi JS. Biol Pharm Bull. 2010; 33:267–272.
24. Fang Z, Jeong SY, Jung HA, Choi JS, Min BS, Woo MH. Chem Pharm Bull. 2010; 58:1236–1239.
25. Darvesh S. Curr Alzheimer Res. 2016; 13:1173–1177.
26. Mehta M, Adem A, Sabbagh M. Int J Alzheimers Dis. 2012; 2012:728983.
27. Guo AJY, Xie HQ, Choi RCY, Zheng KYZ, Bi CWC, Xu SL, Dong TTX, Tsim KWK. Chem Biol Interact. 2010; 187:246–248.
28. Bahrani H, Mohamad J, Paydar MJ, Rothan HA. Curr Alzheimer Res. 2014; 11:206–214.
29. Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M, Awang K. Bioorg Med Chem. 2016; 24:4464–4469.
30. Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, Karanam AK, Christopher S. Clin Interv Aging. 2017; 12:697–707.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr