1. Cecchi L, D'Amato G, Ayres JG, Galan C, Forastiere F, Forsberg B, et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy. 2010; 65:1073–1081.
Article
2. Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, et al. Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol. 2017; 51:4119–4141.
Article
3. Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N Engl J Med. 1990; 323:502–507.
4. Posa D, Perna S, Resch Y, Lupinek C, Panetta V, Hofmaier S, et al. Evolution and predictive value of IgE responses toward a comprehensive panel of house dust mite allergens during the first 2 decades of life. J Allergy Clin Immunol. 2017; 139:541–549.e8.
5. Caraballo L. Mite allergens. Expert Rev Clin Immunol. 2017; 13:297–299.
Article
6. Andiappan AK, Puan KJ, Lee B, Nardin A, Poidinger M, Connolly J, et al. Allergic airway diseases in a tropical urban environment are driven by dominant mono-specific sensitization against house dust mites. Allergy. 2014; 69:501–509.
Article
7. Ariano R, Canonica GW, Passalacqua G. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allergy Asthma Immunol. 2010; 104:215–222.
Article
8. Patella V, Florio G, Magliacane D, Giuliano A, Crivellaro MA, Di Bartolomeo D, et al. Urban air pollution and climate change: “The Decalogue: Allergy Safe Tree” for allergic and respiratory diseases care. Clin Mol Allergy. 2018; 16:20.
Article
9. Katelaris CH, Beggs PJ. Climate change: allergens and allergic diseases. Intern Med J. 2018; 48:129–134.
Article
10. Peden DB. The epidemiology and genetics of asthma risk associated with air pollution. J Allergy Clin Immunol. 2005; 115:213–219.
Article
11. Burbank AJ, Sood AK, Kesic MJ, Peden DB, Hernandez ML. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017; 140:1–12.
Article
12. Saglani S, Gregory LG, Manghera AK, Branchett WJ, Uwadiae F, Entwistle LJ, et al. Inception of early-life allergen-induced airway hyperresponsiveness is reliant on IL-13+CD4+ T cells. Sci Immunol. 2018; 3:eaan4128.
13. Tovey ER, Almqvist C, Li Q, Crisafulli D, Marks GB. Nonlinear relationship of mite allergen exposure to mite sensitization and asthma in a birth cohort. J Allergy Clin Immunol. 2008; 122:114–118. 118.e1–115.
Article
14. Zakzuk J, Mercado D, Bornacelly A, Sánchez J, Ahumada V, Acevedo N, et al. Hygienic conditions influence sensitization to Blomia tropicalis allergenic components: results from the FRAAT birth cohort. Pediatr Allergy Immunol. 2019; 30:172–178.
15. Pulsawat P, Soongrung T, Satitsuksanoa P, Le Mignon M, Khemili S, Gilis D, et al. The house dust mite allergen Der p 5 binds lipid ligands and stimulates airway epithelial cells through a TLR2-dependent pathway. Clin Exp Allergy. 2019; 49:378–390.
Article
16. Soongrung T, Mongkorntanyatip K, Peepim T, Buaklin A, Le Mignon M, Malainual N, et al. The Blomia tropicalis allergen Blo t 7 stimulates innate immune signalling pathways through TLR2. Clin Exp Allergy. 2018; 48:464–474.
17. Satitsuksanoa P, Kennedy M, Gilis D, Le Mignon M, Suratannon N, Soh WT, et al. The minor house dust mite allergen Der p 13 is a fatty acid-binding protein and an activator of a TLR2-mediated innate immune response. Allergy. 2016; 71:1425–1434.
Article
18. Resch Y, Blatt K, Malkus U, Fercher C, Swoboda I, Focke-Tejkl M, et al. Molecular, structural and immunological characterization of Der p 18, a chitinase-like house dust mite allergen. PLoS One. 2016; 11:e0160641.
Article
19. Zakzuk J, Benedetti I, Fernández-Caldas E, Caraballo L. The influence of chitin on the immune response to the house dust mite allergen Blo T 12. Int Arch Allergy Immunol. 2014; 163:119–129.
Article
20. van Bronswijk JE, de Cock AW, Oshima S. The genus Blomia Oudemans (Acari: Glycyphagidae) I. Description of Blomia tropicalis sp. n. from house dust in tropical and sub-tropical regions. Acarologia. 1974; 15:477–489.
21. Chew FT, Zhang L, Ho TM, Lee BW. House dust mite fauna of tropical Singapore. Clin Exp Allergy. 1999; 29:201–206.
Article
22. Croce M, Costa-Manso E, Baggio D, Croce J. House dust mites in the city of Lima, Peru. J Investig Allergol Clin Immunol. 2000; 10:286–288.
23. Sharma D, Dutta BK, Singh AB. Dust mites population in indoor houses of suspected allergic patients of South Assam, India. ISRN Allergy. 2011; 2011:576849.
Article
24. Hurtado I, Parini M. House dust mites in Caracas, Venezuela. Ann Allergy. 1987; 59:128–130.
25. Fernández-Caldas E, Fox RW, Bucholtz GA, Trudeau WL, Ledford DK, Lockey RF. House dust mite allergy in Florida. Mite survey in households of mite-sensitive individuals in Tampa, Florida. Allergy Proc. 1990; 11:263–267.
Article
26. Fernández-Caldas E, Puerta L, Mercado D, Lockey RF, Caraballo LR. Mite fauna, Der p I, Der f I and Blomia tropicalis allergen levels in a tropical environment. Clin Exp Allergy. 1993; 23:292–297.
27. Arlian LG, Morgan MS, Neal JS. Dust mite allergens: ecology and distribution. Curr Allergy Asthma Rep. 2002; 2:401–411.
Article
28. Zock JP, Heinrich J, Jarvis D, Verlato G, Norbäck D, Plana E, et al. Distribution and determinants of house dust mite allergens in Europe: the European Community Respiratory Health Survey II. J Allergy Clin Immunol. 2006; 118:682–690.
Article
29. Caraballo L, Zakzuk J, Lee BW, Acevedo N, Soh JY, Sánchez-Borges M, et al. Particularities of allergy in the Tropics. World Allergy Organ J. 2016; 9:20.
Article
30. Alimuddin S, Rengganis I, Rumende CM, Setiati S. Comparison of specific immunoglobulin E with the skin prick test in the diagnosis of house dust mites and cockroach sensitization in patients with asthma and/or allergic rhinitis. Acta Med Indones. 2018; 50:125–131.
31. Wan KS, Yang W, Wu WF. A survey of serum specific-lgE to common allergens in primary school children of Taipei City. Asian Pac J Allergy Immunol. 2010; 28:1–6.
32. Podder S, Gupta SK, Saha GK. Incrimination of Blomia tropicalis as a potent allergen in house dust and its role in allergic asthma in Kolkata Metropolis, India. World Allergy Organ J. 2010; 3:182–187.
33. Tham EH, Lee AJ, Bever HV. Aeroallergen sensitization and allergic disease phenotypes in Asia. Asian Pac J Allergy Immunol. 2016; 34:181–189.
Article
34. Zhang Y, Zhang L. Increasing prevalence of allergic rhinitis in China. Allergy Asthma Immunol Res. 2019; 11:156–169.
Article
35. Stevens W, Addo-Yobo E, Roper J, Woodcock A, James H, Platts-Mills T, et al. Differences in both prevalence and titre of specific immunoglobulin E among children with asthma in affluent and poor communities within a large town in Ghana. Clin Exp Allergy. 2011; 41:1587–1594.
Article
36. Ezeamuzie CI, Thomson MS, Al-Ali S, Dowaisan A, Khan M, Hijazi Z. Asthma in the desert: spectrum of the sensitizing aeroallergens. Allergy. 2000; 55:157–162.
Article
37. Dowaisan A, Al-Ali S, Khan M, Hijazi Z, Thomson MS, Ezeamuzie CI. Sensitization to aeroallergens among patients with allergic rhinitis in a desert environment. Ann Allergy Asthma Immunol. 2000; 84:433–438.
Article
38. Mehulić M, Mehulić K, Vuljanko IM, Kukulj S, Grle SP, Vukić AD, et al. Changing pattern of sensitization in Croatia to aeroallergens in adult population referring to allergy clinic during a period of 15 years. Coll Antropol. 2011; 35:529–536.
39. Kidon MI, Chiang WC, Liew WK, Lim SH, See Y, Goh A, et al. Sensitization to dust mites in children with allergic rhinitis in Singapore: does it matter if you scratch while you sneeze? Clin Exp Allergy. 2005; 35:434–440.
Article
40. Park JW, Ko SH, Yong TS, Ree HI, Jeoung BJ, Hong CS. Cross-reactivity of Tyrophagus putrescentiae with Dermatophagoides farinae and Dermatophagoides pteronyssinus in urban areas. Ann Allergy Asthma Immunol. 1999; 83:533–539.
41. Yu MK, Lin CY, Chen WL, Chen CT. Prevalence of Blomia tropicalis in wheezing children in central Taiwan. J Microbiol Immunol Infect. 2008; 41:68–73.
42. Liao EC, Ho CM, Tsai JJ. Prevalence of Tyrophagus putrescentiae hypersensitivity in subjects over 70 years of age in a veterans' nursing home in Taiwan. Int Arch Allergy Immunol. 2010; 152:368–377.
43. Ree HI, Jeon SH, Lee IY, Hong CS, Lee DK. Fauna and geographical distribution of house dust mites in Korea. Korean J Parasitol. 1997; 35:9–17.
Article
44. Kang MG, Kim MY, Song WJ, Kim S, Jo EJ, Lee SE, et al. Patterns of inhalant allergen sensitization and geographical variation in Korean adults: a multicenter retrospective study. Allergy Asthma Immunol Res. 2017; 9:499–508.
Article
45. Kim J, Hahm MI, Lee SY, Kim WK, Chae Y, Park YM, et al. Sensitization to aeroallergens in Korean children: a population-based study in 2010. J Korean Med Sci. 2011; 26:1165–1172.
Article
46. Jeong KY, Park JW, Hong CS. House dust mite allergy in Korea: the most important inhalant allergen in current and future. Allergy Asthma Immunol Res. 2012; 4:313–325.
Article
47. Park HJ, Lim HS, Park KH, Lee JH, Park JW, Hong CS. Changes in allergen sensitization over the last 30 years in Korea respiratory allergic patients: a single-center. Allergy Asthma Immunol Res. 2014; 6:434–443.
Article
48. Li J, Wang H, Chen Y, Zheng J, Wong GW, Zhong N. House dust mite sensitization is the main risk factor for the increase in prevalence of wheeze in 13- to 14-year-old schoolchildren in Guangzhou City, China. Clin Exp Allergy. 2013; 43:1171–1179.
49. Chen Y, Wang H, Wong GW, Zhong N, Li J. Allergen sensitization affected the change trend of prevalence of symptoms of rhinitis coexisting with wheeze among adolescents in Guangzhou City from 1994 to 2009. Pediatr Allergy Immunol. 2017; 28:340–347.
Article
50. Wang W, Huang X, Chen Z, Zheng R, Chen Y, Zhang G, et al. Prevalence and trends of sensitisation to aeroallergens in patients with allergic rhinitis in Guangzhou, China: a 10-year retrospective study. BMJ Open. 2016; 6:e011085.
Article
51. Andrews O, Le Quéré C, Kjellstrom T, Lemke B, Haines A. Implications for workability and survivability in populations exposed to extreme heat under climate change: a modelling study. Lancet Planet Health. 2018; 2:e540–e547.
Article
52. Gehring U, Brunekreef B, Fahlbusch B, Wichmann HE, Heinrich J. INGA Study Group. Are house dust mite allergen levels influenced by cold winter weather? Allergy. 2005; 60:1079–1082.
Article
53. Hales S, Lewis S, Slater T, Crane J, Pearce N. Prevalence of adult asthma symptoms in relation to climate in New Zealand. Environ Health Perspect. 1998; 106:607–610.
Article
54. Lam HC, Hajat S, Chan EY, Goggins WB 3rd. Different sensitivities to ambient temperature between first- and re-admission childhood asthma cases in Hong Kong - a time series study. Environ Res. 2019; 170:487–492.
Article
55. Pagán JA, Huertas AJ, Iraola V, Pinto H, Martínez R, Ramírez M, et al. Mite exposure in a Spanish Mediterranean region. Allergol Immunopathol (Madr). 2012; 40:92–99.
Article
56. Hubert J, Pekár S, Nesvorná M, Sustr V. Temperature preference and respiration of acaridid mites. J Econ Entomol. 2010; 103:2249–2257.
Article
57. Mahakittikun V, Boitano JJ, Ninsanit P, Wangapai T, Ralukruedej K. Effects of high and low temperatures on development time and mortality of house dust mite eggs. Exp Appl Acarol. 2011; 55:339–347.
Article
58. Yella L, Morgan MS, Arlian LG. Population growth and allergen accumulation of Dermatophagoides farinae cultured at 20 and 25°C. Exp Appl Acarol. 2013; 60:117–126.
59. Hart BJ. Life cycle and reproduction of house-dust mites: environmental factors influencing mite populations. Allergy. 1998; 53:13–17.
Article
60. Arlian LG, Platts-Mills TA. The biology of dust mites and the remediation of mite allergens in allergic disease. J Allergy Clin Immunol. 2001; 107:S406–S413.
Article
61. Arlian LG. Water balance and humidity requirements of house dust mites. Exp Appl Acarol. 1992; 16:15–35.
Article
62. Arlian LG, Confer PD, Rapp CM, Vyszenski-Moher DL, Chang JC. Population dynamics of the house dust mites Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei (Acari: Pyroglyphidae) at specific relative humidities. J Med Entomol. 1998; 35:46–53.
63. Mercado D, Puerta L, Caraballo L. Life-cycle of Suidasia medanensis (=pontifica) (Acari: Suidasiidae) under laboratory conditions in a tropical environment. Exp Appl Acarol. 2001; 25:751–755.
64. Yi FC, Chew FT, Jimenez S, Chua KY, Lee BW. Culture of Blomia tropicalis and IgE immunoblot characterization of its allergenicity. Asian Pac J Allergy Immunol. 1999; 17:189–194.
65. Arlian LG, Neal JS, Morgan MS, Vyszenski-Moher DL, Rapp CM, Alexander AK. Reducing relative humidity is a practical way to control dust mites and their allergens in homes in temperate climates. J Allergy Clin Immunol. 2001; 107:99–104.
Article
66. Lee SW, Cho E, Koh HY, Shin J, Baek JH, Shin YH, et al. Effect of solar irradiation on serum specific immunoglobulin E to house-dust mite. Allergy Asthma Proc. 2015; 36:44–50.
Article
67. Antens CJ, Oldenwening M, Wolse A, Gehring U, Smit HA, Aalberse RC, et al. Repeated measurements of mite and pet allergen levels in house dust over a time period of 8 years. Clin Exp Allergy. 2006; 36:1525–1531.
Article
68. Duenas-Meza E, Torres-Duque CA, Correa-Vera E, Suárez M, Vásquez C, Jurado J, et al. High prevalence of house dust mite sensitization in children with severe asthma living at high altitude in a tropical country. Pediatr Pulmonol. 2018; 53:1356–1361.
Article
69. Grafetstätter C, Prossegger J, Braunschmid H, Sanovic R, Hahne P, Pichler C, et al. No concentration decrease of house dust mite allergens with rising altitude in Alpine regions. Allergy Asthma Immunol Res. 2016; 8:312–318.
Article
70. Rijckaert G, van Bronswijk JE, Linskens HF. House-dust community (Fungi, mites) in different climatic regions. Oecologia. 1981; 48:183–185.
Article
71. Hay DB, Hart BJ, Pearce RB, Kozakiewicz Z, Douglas AE. How relevant are house dust mite-fungal interactions in laboratory culture to the natural dust system? Exp Appl Acarol. 1992; 16:37–47.
Article
72. Van Asselt L. Review: interactions between domestic mites and Fungi. Indoor Built Environ. 1999; 8:216–220.
73. Hubert J, Nesvorna M, Kopecky J, Erban T, Klimov P. Population and culture age influence the microbiome profiles of house dust mites. Microb Ecol. 2019; 77:1048–1066.
Article
74. Song WJ, Sohn KH, Kang MG, Park HK, Kim MY, Kim SH, et al. Urban-rural differences in the prevalence of allergen sensitization and self-reported rhinitis in the elderly population. Ann Allergy Asthma Immunol. 2015; 114:455–461.
Article
75. Kidon MI, See Y, Goh A, Chay OM, Balakrishnan A. Aeroallergen sensitization in pediatric allergic rhinitis in Singapore: is air-conditioning a factor in the tropics? Pediatr Allergy Immunol. 2004; 15:340–343.
Article
76. Johnston JD, Barney TP, Crandall JH, Brown MA, Westover TR, Paulson SM, et al. Prevalence of house dust mite allergens in low-income homes with evaporative coolers in a semiarid climate. Arch Environ Occup Health. 2018; 73:38–41.
Article
77. Randall TA, London RE, Fitzgerald MC, Mueller GA. Proteases of Dermatophagoides pteronyssinus. Int J Mol Sci. 2017; 18:1204.
78. Erban T, Harant K, Hubert J. Detailed two-dimensional gel proteomic mapping of the feces of the house dust mite Dermatophagoides pteronyssinus and comparison with D. farinae: reduced trypsin protease content in D. pteronyssinus and different isoforms. J Proteomics. 2017; 162:11–19.
79. Morales M, Iraola V, Leonor JR, Carnés J. Enzymatic activity of allergenic house dust and storage mite extracts. J Med Entomol. 2013; 50:147–154.
Article
80. Chan TF, Ji KM, Yim AK, Liu XY, Zhou JW, Li RQ, et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol. 2015; 135:539–548.
81. Batard T, Hrabina A, Bi XZ, Chabre H, Lemoine P, Couret MN, et al. Production and proteomic characterization of pharmaceutical-grade Dermatophagoides pteronyssinus and Dermatophagoides farinae extracts for allergy vaccines. Int Arch Allergy Immunol. 2006; 140:295–305.
82. Erban T, Hubert J. Digestive physiology of synanthropic mites (Acari: Acaridida). SOAJ Entomol Stud. 2012; 1:1–32.
83. Herre J, Grönlund H, Brooks H, Hopkins L, Waggoner L, Murton B, et al. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands. J Immunol. 2013; 191:1529–1535.
Article
84. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009; 457:585–588.
Article
85. Chiou YL, Lin CY. Der p2 activates airway smooth muscle cells in a TLR2/MyD88-dependent manner to induce an inflammatory response. J Cell Physiol. 2009; 220:311–318.
Article
86. Mueller GA, Edwards LL, Aloor JJ, Fessler MB, Glesner J, Pomés A, et al. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol. 2010; 125:909–917.e4.
Article
87. Shi XZ, Zhong X, Yu XQ. Drosophila melanogaster NPC2 proteins bind bacterial cell wall components and may function in immune signal pathways. Insect Biochem Mol Biol. 2012; 42:545–556.
Article
88. Park HG, Lee KS, Kim BY, Yoon HJ, Choi YS, Lee KY, et al. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev Comp Immunol. 2018; 85:51–60.
Article
89. Vidal-Quist JC, Ortego F, Rombauts S, Castañera P, Hernández-Crespo P. Dietary shifts have consequences for the repertoire of allergens produced by the European house dust mite. Med Vet Entomol. 2017; 31:272–280.
Article
90. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol. 2009; 182:3573–3582.
Article
91. Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol. 2008; 181:4279–4286.
Article
92. Da Silva CA, Pochard P, Lee CG, Elias JA. Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med. 2010; 182:1482–1491.
Article
93. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011; 73:479–501.
Article
94. Douwes J, van der Sluis B, Doekes G, van Leusden F, Wijnands L, van Strien R, et al. Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol. 1999; 103:494–500.
Article
95. Vidal-Quist JC, Ortego F, Lambrecht BN, Castañera P, Hernández-Crespo P. Effects of domestic chemical stressors on expression of allergen genes in the European house dust mite. Med Vet Entomol. 2017; 31:97–101.
Article
96. Heseltine E, Rosen J. WHO guidelines for indoor air quality: dampness and mould. Copenhagen: WHO Regional Office for Europe;2009.
97. Acevedo N, Sánchez J, Erler A, Mercado D, Briza P, Kennedy M, et al. IgE cross-reactivity between Ascaris and domestic mite allergens: the role of tropomyosin and the nematode polyprotein ABA-1. Allergy. 2009; 64:1635–1643.
98. Acevedo N, Erler A, Briza P, Puccio F, Ferreira F, Caraballo L. Allergenicity of Ascaris lumbricoides tropomyosin and IgE sensitization among asthmatic patients in a tropical environment. Int Arch Allergy Immunol. 2011; 154:195–206.
99. Santiago HC, Bennuru S, Boyd A, Eberhard M, Nutman TB. Structural and immunologic cross-reactivity among filarial and mite tropomyosin: implications for the hygiene hypothesis. J Allergy Clin Immunol. 2011; 127:479–486.
Article
100. Santos AB, Rocha GM, Oliver C, Ferriani VP, Lima RC, Palma MS, et al. Cross-reactive IgE antibody responses to tropomyosins from Ascaris lumbricoides and cockroach. J Allergy Clin Immunol. 2008; 121:1040–1046.e1.
Article
101. Provoost S, Maes T, Willart MA, Joos GF, Lambrecht BN, Tournoy KG. Diesel exhaust particles stimulate adaptive immunity by acting on pulmonary dendritic cells. J Immunol. 2010; 184:426–432.
Article
102. Deiuliis JA, Kampfrath T, Zhong J, Oghumu S, Maiseyeu A, Chen LC, et al. Pulmonary T cell activation in response to chronic particulate air pollution. Am J Physiol Lung Cell Mol Physiol. 2012; 302:L399–L409.
Article
103. Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A. Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol. 1999; 104:1183–1188.
Article
104. Diaz-Sanchez D, Tsien A, Fleming J, Saxon A. Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol. 1997; 158:2406–2413.
105. Brandt EB, Kovacic MB, Lee GB, Gibson AM, Acciani TH, Le Cras TD, et al. Diesel exhaust particle induction of IL-17A contributes to severe asthma. J Allergy Clin Immunol. 2013; 132:1194–1204.e2.
106. Gavett SH, Madison SL, Stevens MA, Costa DL. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice. Am J Respir Crit Care Med. 1999; 160:1897–1904.
Article
107. Lambert AL, Dong W, Winsett DW, Selgrade MK, Gilmour MI. Residual oil fly ash exposure enhances allergic sensitization to house dust mite. Toxicol Appl Pharmacol. 1999; 158:269–277.
Article
108. Koehler C, Paulus M, Ginzkey C, Hackenberg S, Scherzad A, Ickrath P, et al. The proinflammatory potential of nitrogen dioxide and its influence on the house dust mite allergen Der p 1. Int Arch Allergy Immunol. 2016; 171:27–35.
Article
109. Canbaz D, Lebre MC, Logiantara A, van Ree R, van Rijt LS. Indoor pollutant hexabromocyclododecane enhances house dust mite-induced activation of human monocyte-derived dendritic cells. J Immunotoxicol. 2016; 13:810–816.
Article
110. Caraballo L, Acevedo N, Zakzuk J. Ascariasis as a model to study the helminth/allergy relationships. Parasite Immunol. 2018; e12595.
Article
111. Buendía E, Zakzuk J, Mercado D, Alvarez A, Caraballo L. The IgE response to Ascaris molecular components is associated with clinical indicators of asthma severity. World Allergy Organ J. 2015; 8:8.
Article
112. Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity. 2016; 44:647–658.
Article
113. Lynch NR, Hagel I, Perez M, Di Prisco MC, Lopez R, Alvarez N. Effect of anthelmintic treatment on the allergic reactivity of children in a tropical slum. J Allergy Clin Immunol. 1993; 92:404–411.
Article
114. van den Biggelaar AH, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YC, Souverijn JH, et al. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis. 2004; 189:892–900.
Article
115. Staal SL, Hogendoorn SK, Voets SA, Tepper RC, Veenstra M, de Vos II, et al. Prevalence of atopy following mass drug administration with albendazole: a study in school children on Flores Island, Indonesia. Int Arch Allergy Immunol. 2018; 177:192–198.
Article
116. Stein M, Greenberg Z, Boaz M, Handzel ZT, Meshesha MK, Bentwich Z. The role of helminth infection and environment in the development of allergy: a prospective study of newly-arrived Ethiopian immigrants in Israel. PLoS Negl Trop Dis. 2016; 10:e0004208.
Article
117. Kim KW, Ober C. Lessons learned from GWAS of asthma. Allergy Asthma Immunol Res. 2019; 11:170–187.
Article
118. Sánchez-Borges M, Fernandez-Caldas E, Thomas WR, Chapman MD, Lee BW, Caraballo L, et al. International consensus (ICON) on: clinical consequences of mite hypersensitivity, a global problem. World Allergy Organ J. 2017; 10:14.
Article
119. da Costa Lima Caniatti MC, Borelli SD, Guilherme AL, Tsuneto LT. Association between HLA genes and dust mite sensitivity in a Brazilian population. Hum Immunol. 2017; 78:88–94.
120. Kim JH, Cheong HS, Park JS, Jang AS, Uh ST, Kim YH, et al. A genome-wide association study of total serum and mite-specific IgEs in asthma patients. PLoS One. 2013; 8:e71958.
Article
121. Andiappan AK, Wang Y, Anantharaman R, Suri BK, Lee BT, Rotzschke O, et al. Replication of genome-wide association study loci for allergic rhinitis and house dust mite sensitization in an Asian population of ethnic Chinese in Singapore. J Allergy Clin Immunol. 2013; 131:1431–1433.e8.
Article
122. Suaini NHA, Koplin JJ, Peters RL, Sasaki M, Ellis JA, Martino DJ, et al. Children with East Asian-born parents have an increased risk of allergy but may not have more asthma in early childhood. J Allergy Clin Immunol Pract. 2019; 7:539–547.e3.
Article
123. Vergara C, Tsai YJ, Grant AV, Rafaels N, Gao L, Hand T, et al. Gene encoding Duffy antigen/receptor for chemokines is associated with asthma and IgE in three populations. Am J Respir Crit Care Med. 2008; 178:1017–1022.
Article
124. Chapman DG, Mougey EB, Van der Velden JL, Lahue KG, Aliyeva M, Daphtary N, et al. The Duffy antigen receptor for chemokines regulates asthma pathophysiology. Clin Exp Allergy. 2017; 47:1214–1222.
Article
125. Sordillo JE, Kelly R, Bunyavanich S, McGeachie M, Qiu W, Croteau-Chonka DC, et al. Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J Allergy Clin Immunol. 2015; 136:885–892.e2.
Article
126. Liu X, Beaty TH, Deindl P, Huang SK, Lau S, Sommerfeld C, et al. Associations between specific serum IgE response and 6 variants within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. J Allergy Clin Immunol. 2004; 113:489–495.
127. Pascual M, Suzuki M, Isidoro-Garcia M, Padrón J, Turner T, Lorente F, et al. Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics. 2011; 6:1131–1137.
Article
128. Li JY, Zhang Y, Lin XP, Ruan Y, Wang Y, Wang CS, et al. Association between DNA hypomethylation at IL13 gene and allergic rhinitis in house dust mite-sensitized subjects. Clin Exp Allergy. 2016; 46:298–307.
Article
129. Shang Y, Das S, Rabold R, Sham JS, Mitzner W, Tang WY. Epigenetic alterations by DNA methylation in house dust mite-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2013; 49:279–287.
Article
130. Cheng RY, Shang Y, Limjunyawong N, Dao T, Das S, Rabold R, et al. Alterations of the lung methylome in allergic airway hyper-responsiveness. Environ Mol Mutagen. 2014; 55:244–255.
Article
131. Zhang X, Chen X, Weirauch MT, Zhang X, Burleson JD, Brandt EB, et al. Diesel exhaust and house dust mite allergen lead to common changes in the airway methylome and hydroxymethylome. Environ Epigenet. 2018; 4:dvy020.
Article
132. Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol. 2018; 142:765–772.
Article
133. Arshad SH, Karmaus W, Zhang H, Holloway JW. Multigenerational cohorts in patients with asthma and allergy. J Allergy Clin Immunol. 2017; 139:415–421.
Article
134. Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 2018; 359:83–86.
Article