Int J Stem Cells.  2019 Mar;12(1):1-7. 10.15283/ijsc18096.

Toward a Reconceptualization of Stem Cells from Cellular Plasticity

Affiliations
  • 1Department of Infectious Diseases, Navy No.971 Hospital (formerly known as No.401 Hospital) of Chinese PLA, Qingdao, China.
  • 2Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
  • 3Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. zsc78@yeah.net

Abstract

The slow progress in clinical applications of stem cells and the bewildering mechanisms involved have puzzled many researchers. Recently, the increasing evidences have indicated that cells have superior plasticity in vivo or in vitro, spontaneously or under extrinsic specific inducers. The concept of stem cells may be challenged, or even replaced by the concept of cell plasticity when cell reprogramming technology is progressing rapidly. The characteristics of stem cells are manifestations of cellular plasticity. Incorrect understanding of the concept of stem cells hinders the clinical application of so-called stem cells. Understanding cellular plasticity is important for understanding and treating disease. The above issues will be discussed in detail to prove the reconceptualization of stem cells from cellular plasticity.

Keyword

Stem cells; Plasticity; Differentiation; Dedifferentiation; Transdifferentiation

MeSH Terms

Cell Plasticity*
Cellular Reprogramming
In Vitro Techniques
Plastics
Stem Cells*
Plastics

Figure

  • Fig. 1 A schematic diagram of the extensiveness of cellular plasticity. In theory, cells can transform directly or indirectly to any type of cells through differentiation, dedifferentiation, transdifferentiation or reprogramming.


Reference

References

1. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990; 110:1001–1020. PMID: 2100251.
Article
2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126:663–676. DOI: 10.1016/j.cell.2006.07.024. PMID: 16904174.
Article
3. Srivastava D, DeWitt N. In vivo cellular reprogramming: the next generation. Cell. 2016; 166:1386–1396. DOI: 10.1016/j.cell.2016.08.055. PMID: 27610565. PMCID: 6234007.
4. Iwafuchi-Doi M, Zaret KS. Cell fate control by pioneer transcription factors. Development. 2016; 143:1833–1837. DOI: 10.1242/dev.133900. PMID: 27246709.
Article
5. Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. Mol Biosyst. 2017; 13:277–313. DOI: 10.1039/C6MB00595K. PMID: 27918060.
Article
6. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, Thung SN, Wells RG, Greenbaum LE, Stanger BZ. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013; 27:719–724. DOI: 10.1101/gad.207803.112. PMID: 23520387. PMCID: 3639413.
Article
7. Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, Cohen P, Sneddon JB, Perin L, Longo VD. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell. 2017; 168:775–788.e12. DOI: 10.1016/j.cell.2017.01.040. PMID: 28235195. PMCID: 5357144.
Article
8. Chen Y, Wong PP, Sjeklocha L, Steer CJ, Sahin MB. Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology. 2012; 55:563–574. DOI: 10.1002/hep.24712. PMID: 21953633. PMCID: 3268884.
Article
9. He J, Lu H, Zou Q, Luo L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology. 2014; 146:789–800.e8. DOI: 10.1053/j.gastro.2013.11.045. PMID: 24315993.
Article
10. Hindley CJ, Mastrogiovanni G, Huch M. The plastic liver: differentiated cells, stem cells, every cell? J Clin Invest. 2014; 124:5099–5102. DOI: 10.1172/JCI78372. PMID: 25401467. PMCID: 4348964.
Article
11. Kordes C, Sawitza I, Götze S, Herebian D, Häussinger D. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest. 2014; 124:5503–5515. DOI: 10.1172/JCI74119. PMID: 25401473. PMCID: 4348953.
Article
12. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, Grompe M. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014; 15:605–618. DOI: 10.1016/j.stem.2014.09.008. PMID: 25312494. PMCID: 4254170.
Article
13. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, Pikarsky E, Stanger BZ. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014; 15:340–349. DOI: 10.1016/j.stem.2014.06.003. PMID: 25130492. PMCID: 4505916.
Article
14. Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, Taniguchi K, Nakagawa H, Valasek MA, Ye L, Kopp JL, Sander M, Carter H, Deisseroth K, Verma IM, Karin M. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell. 2015; 162:766–779. DOI: 10.1016/j.cell.2015.07.026. PMID: 26276631. PMCID: 4545590.
Article
15. Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015; 524:180–185. DOI: 10.1038/nature14863. PMID: 26245375. PMCID: 4589224.
Article
16. Alison MR, Lin WR. Regenerating the liver: not so simple after all? F1000Res. 2016; 5:F1000 Faculty Rev-1818. DOI: 10.12688/f1000research.8827.1. PMID: 27508069. PMCID: 4962288.
Article
17. Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology. 2016; 64:4–7. DOI: 10.1002/hep.28606. PMID: 27102721.
Article
18. Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int. 2017; 37:1260–1271. DOI: 10.1111/liv.13377. PMID: 28135758. PMCID: 5534384.
Article
19. Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O’Duibhir E, Dwyer BJ, Thomson JP, Meehan RR, Bogorad R, Koteliansky V, Kotelevtsev Y, Ffrench-Constant C, Boulter L, Forbes SJ. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature. 2017; 547:350–354. DOI: 10.1038/nature23015. PMID: 28700576. PMCID: 5522613.
Article
20. Bonifer C, Cockerill PN. Chromatin priming of genes in development: concepts, mechanisms and consequences. Exp Hematol. 2017; 49:1–8. DOI: 10.1016/j.exphem.2017.01.003. PMID: 28185904.
Article
21. Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology. 2016; 64:277–286. DOI: 10.1002/hep.28326. PMID: 26524612.
Article
22. Oikawa T. Cancer stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology. 2016; 64:645–651. DOI: 10.1002/hep.28485. PMID: 26849406.
Article
23. Itoh T. Stem/progenitor cells in liver regeneration. Hepatology. 2016; 64:663–668. DOI: 10.1002/hep.28661. PMID: 27227904.
Article
24. Huch M, Dollé L. The plastic cellular states of liver cells: are EpCAM and Lgr5 fit for purpose? Hepatology. 2016; 64:652–662. DOI: 10.1002/hep.28469. PMID: 26799921. PMCID: 4973669.
Article
25. Michalopoulos GK, Khan Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology. 2015; 149:876–882. DOI: 10.1053/j.gastro.2015.08.004. PMID: 26278502. PMCID: 4584191.
Article
26. Sen CK. Expanding horizons of cellular plasticity in regenerative medicine. Am J Pathol. 2015; 185:2592–2595. DOI: 10.1016/j.ajpath.2015.06.003. PMID: 26435411. PMCID: 4607755.
Article
27. Aloia L, McKie MA, Huch M. Cellular plasticity in the adult liver and stomach. J Physiol. 2016; 594:4815–4825. DOI: 10.1113/JP271769. PMID: 27028579. PMCID: 5009796.
Article
28. Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy’s benefits and risks. N Engl J Med. 2017; 376:1007–1009. DOI: 10.1056/NEJMp1613723. PMID: 27959704.
Article
29. Traynor K. FDA approves first stem-cell therapy. Am J Health Syst Pharm. 2011; 68:2316. DOI: 10.2146/news110082. PMID: 22135053.
Article
30. Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, McConnachie A, Santosh C, Bath PM, Dunn L, Muir KW. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016; 388:787–796. DOI: 10.1016/S0140-6736(16)30513-X. PMID: 27497862.
Article
31. Ciccocioppo R, Gallia A, Avanzini MA, Betti E, Picone C, Vanoli A, Paganini C, Biagi F, Maccario R, Corazza GR. A refractory celiac patient successfully treated with mesenchymal stem cell infusions. Mayo Clin Proc. 2016; 91:812–819. DOI: 10.1016/j.mayocp.2016.03.001. PMID: 27087453.
Article
32. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017; 376:1038–1046. DOI: 10.1056/NEJMoa1608368. PMID: 28296613.
Article
33. Jin J. Stem cell treatments. JAMA. 2017; 317:330. DOI: 10.1001/jama.2016.17822. PMID: 28114555.
Article
34. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Ellis SG. One-year follow-up of intracoronary stem cell delivery on left ventricular function following ST-elevation myocardial infarction. JAMA. 2014; 311:301–302. DOI: 10.1001/jama.2013.282674. PMID: 24247415. PMCID: 4269333.
Article
35. Zhang S, Chen L, Liu T, Zhang B, Xiang D, Wang Z, Wang Y. Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng Part A. 2012; 18:1352–1364. DOI: 10.1089/ten.tea.2011.0516. PMID: 22519429. PMCID: 3397120.
Article
36. Glembotski CC. Expanding the paracrine hypothesis of stem cell-mediated repair in the heart: when the unconventional becomes conventional. Circ Res. 2017; 120:772–774. DOI: 10.1161/CIRCRESAHA.116.310298. PMID: 28254800. PMCID: 5430302.
Article
37. Chen L, Zhang J, Yang L, Zhang G, Wang Y, Zhang S. The effects of conditioned medium derived from mesenchymal stem cells cocultured with hepatocytes on damaged hepatocytes and acute liver failure in rats. Stem Cells Int. 2018; 2018:9156560. DOI: 10.1155/2018/9156560. PMID: 30123296. PMCID: 6079333.
Article
38. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S, Adachi Y, Taniguchi H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013; 499:481–484. DOI: 10.1038/nature12271. PMID: 23823721.
Article
39. Drost J, Clevers H. Translational applications of adult stem cell-derived organoids. Development. 2017; 144:968–975. DOI: 10.1242/dev.140566. PMID: 28292843.
Article
40. Zhang S, Liu P, Chen L, Wang Y, Wang Z, Zhang B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials. 2015; 41:15–25. DOI: 10.1016/j.biomaterials.2014.11.019. PMID: 25522961.
Article
41. Do JT, Schöler HR. Regulatory circuits underlying pluripotency and reprogramming. Trends Pharmacol Sci. 2009; 30:296–302. DOI: 10.1016/j.tips.2009.03.003. PMID: 19427042.
Article
42. Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev. 2014; 23:796–812. DOI: 10.1089/scd.2013.0364. PMID: 24368070. PMCID: 3991987.
Article
43. Liu T, Zhang S, Xiang D, Wang Y. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a. J Cell Biochem. 2013; 114:2531–2541. DOI: 10.1002/jcb.24604. PMID: 23744720.
Article
44. Kojima J, Fukuda A, Taira H, Kawasaki T, Ito H, Kuji N, Isaka K, Umezawa A, Akutsu H. Efficient production of trophoblast lineage cells from human induced pluripotent stem cells. Lab Invest. 2017; 97:1188–1200. DOI: 10.1038/labinvest.2016.159. PMID: 28287635.
Article
45. Yang J, Ryan DJ, Wang W, Tsang JC, Lan G, Masaki H, Gao X, Antunes L, Yu Y, Zhu Z, Wang J, Kolodziejczyk AA, Campos LS, Wang C, Yang F, Zhong Z, Fu B, Eckersley-Maslin MA, Woods M, Tanaka Y, Chen X, Wilkinson AC, Bussell J, White J, Ramirez-Solis R, Reik W, Göttgens B, Teichmann SA, Tam PPL, Nakauchi H, Zou X, Lu L, Liu P. Establishment of mouse expanded potential stem cells. Nature. 2017; 550:393–397. DOI: 10.1038/nature24052. PMID: 29019987. PMCID: 5890884.
Article
46. Benchetrit H, Herman S, van Wietmarschen N, Wu T, Makedonski K, Maoz N, Yom Tov N, Stave D, Lasry R, Zayat V, Xiao A, Lansdorp PM, Sebban S, Buganim Y. Extensive nuclear reprogramming underlies lineage conversion into functional trophoblast stem-like cells. Cell Stem Cell. 2015; 17:543–556. DOI: 10.1016/j.stem.2015.08.006. PMID: 26412562.
Article
47. Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol. 2016; 17:413–425. DOI: 10.1038/nrm.2016.24. PMID: 26979497. PMCID: 5818993.
Article
48. Tata PR, Rajagopal J. Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol. 2016; 43:46–54. DOI: 10.1016/j.ceb.2016.07.005. PMID: 27485353. PMCID: 5154913.
Article
49. Deng X, Zhang X, Li W, Feng RX, Li L, Yi GR, Zhang XN, Yin C, Yu HY, Zhang JP, Lu B, Hui L, Xie WF. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell. 2018; 23:114–122.e3. DOI: 10.1016/j.stem.2018.05.022. PMID: 29937200.
Article
50. Wells JM, Watt FM. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature. 2018; 557:322–328. DOI: 10.1038/s41586-018-0073-7. PMID: 29769669.
Article
51. Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating cell fate as a therapeutic strategy. Cell Stem Cell. 2018; 23:329–341. DOI: 10.1016/j.stem.2018.05.009. PMID: 29910150. PMCID: 6128730.
Article
52. Ning BF, Ding J, Yin C, Zhong W, Wu K, Zeng X, Yang W, Chen YX, Zhang JP, Zhang X, Wang HY, Xie WF. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res. 2010; 70:7640–7651. DOI: 10.1158/0008-5472.CAN-10-0824. PMID: 20876809.
Article
53. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell. 2014; 14:188–202. DOI: 10.1016/j.stem.2013.12.001. PMID: 24360883. PMCID: 3967760.
Article
54. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012; 110:1465–1473. DOI: 10.1161/CIRCRESAHA.112.269035. PMID: 22539765. PMCID: 3380624.
Article
55. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Pützer BM, Araúzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Schöler HR, Schambach A, Cantz T, Ott M, Sharma AD. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell. 2016; 18:797–808. DOI: 10.1016/j.stem.2016.01.010. PMID: 26923201.
Article
56. Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve stem cells in intestinal homeostasis and injury. Gastroenterology. 2018; 155:1348–1361. DOI: 10.1053/j.gastro.2018.08.016. PMID: 30118745.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr