Allergy Asthma Immunol Res.  2019 May;11(3):306-319. 10.4168/aair.2019.11.3.306.

Influence of Intranasal Drugs on Human Nasal Mucociliary Clearance and Ciliary Beat Frequency

Affiliations
  • 1Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China. dr.luozhang@139.com
  • 2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.

Abstract

The nasal mucociliary clearance system, which comprises epithelial cilia and mucus from goblet cells, is an important intrinsic defense mechanism of the upper respiratory tract. Intranasal drugs and additives can have a detrimental effect on ciliary activity and mucociliary clearance, and thus impact the integrity of nasal defense mechanisms. This article discusses the current literature on the effects of different classes of intranasal drugs including intranasal corticosteroids, antihistamines, decongestants, antimicrobials and antivirals, as well as various drug excipients and nasal irrigation solutions on human nasal mucociliary clearance and ciliary beat frequency. Available data indicate that some intranasal formulations tend to hamper nasal ciliary function and mucociliary clearance. Therefore, it is of great importance to assess the effects of intranasal drugs and additives on mucociliary function before they are recommended as therapy for different nasal conditions.

Keyword

Intranasal administration; excipients; nasal irrigations; mucociliary clearances; cilia

MeSH Terms

Administration, Intranasal
Adrenal Cortex Hormones
Antiviral Agents
Cilia
Defense Mechanisms
Excipients
Goblet Cells
Histamine Antagonists
Humans*
Mucociliary Clearance*
Mucus
Nasal Decongestants
Nasal Lavage
Respiratory System
Adrenal Cortex Hormones
Antiviral Agents
Excipients
Histamine Antagonists
Nasal Decongestants

Reference

1. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007; 337:1–24.
Article
2. Gudis DA, Cohen NA. Cilia dysfunction. Otolaryngol Clin North Am. 2010; 43:461–472.
Article
3. Seybold ZV, Mariassy AT, Stroh D, Kim CS, Gazeroglu H, Wanner A. Mucociliary interaction in vitro: effects of physiological and inflammatory stimuli. J Appl Physiol (1985). 1990; 68:1421–1426.
4. Brożek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010; 126:466–476.
Article
5. Cheng L, Chen J, Fu Q, He S, Li H, Liu Z, et al. Chinese Society of Allergy guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res. 2018; 10:300–353.
6. Benninger MS, Ahmad N, Marple BF. The safety of intranasal steroids. Otolaryngol Head Neck Surg. 2003; 129:739–750.
Article
7. Raphael GD, Berger WE, Prenner BM, Finn AF Jr, Kelley L, Tantry SK. Efficacy, safety, and optimal dose selection of beclomethasone dipropionate nasal aerosol for seasonal allergic rhinitis in adolescents and adults. Curr Med Res Opin. 2013; 29:1329–1340.
Article
8. Mohar D, Berger WE, Laforce C, Raphael G, Desai SY, Huang H, et al. Efficacy and tolerability study of ciclesonide nasal aerosol in patients with perennial allergic rhinitis. Allergy Asthma Proc. 2012; 33:19–26.
Article
9. Holmberg K, Pipkorn U. Influence of topical beclomethasone dipropionate suspension on human nasal mucociliary activity. Eur J Clin Pharmacol. 1986; 30:625–627.
Article
10. Klossek JM, Laliberté F, Laliberté MF, Mounedji N, Bousquet J. Local safety of intranasal triamcinolone acetonide: clinical and histological aspects of nasal mucosa in the long-term treatment of perennial allergic rhinitis. Rhinology. 2001; 39:17–22.
11. Pata YS, Akbaş Y, Unal M, Görür K, Ozcan C, Vayisoğlu Y. The effect of mometasone furoate on mucociliary clearance in patients with perennial allergic rhinitis. Kulak Burun Bogaz Ihtis Derg. 2003; 11:97–99.
12. Naclerio RM, Baroody FM, Bidani N, De Tineo M, Penney BC. A comparison of nasal clearance after treatment of perennial allergic rhinitis with budesonide and mometasone. Otolaryngol Head Neck Surg. 2003; 128:220–227.
Article
13. Duchateau GS, Zuidema J, Merkus FW. The in vitro and in vivo effect of a new non-halogenated corticosteroid - budesonide - aerosol on human ciliary epithelial function. Allergy. 1986; 41:260–265.
14. Stafanger G. In vitro effect of beclomethasone dipropionate and flunisolide on the mobility of human nasal cilia. Allergy. 1987; 42:507–511.
15. Hofmann T, Gugatschga M, Koidl B, Wolf G. Influence of preservatives and topical steroids on ciliary beat frequency in vitro . Arch Otolaryngol Head Neck Surg. 2004; 130:440–445.
16. Jiao J, Meng N, Zhang L. The effect of topical corticosteroids, topical antihistamines, and preservatives on human ciliary beat frequency. ORL J Otorhinolaryngol Relat Spec. 2014; 76:127–136.
Article
17. Horak F, Zieglmayer UP, Zieglmayer R, Kavina A, Marschall K, Munzel U, et al. Azelastine nasal spray and desloratadine tablets in pollen-induced seasonal allergic rhinitis: a pharmacodynamic study of onset of action and efficacy. Curr Med Res Opin. 2006; 22:151–157.
Article
18. Zhang L, Cheng L, Hong J. The clinical use of cetirizine in the treatment of allergic rhinitis. Pharmacology. 2013; 92:14–25.
Article
19. Achterrath-Tuckermann U, Saano V, Minker E, Stroman F, Arny I, Joki S, et al. Influence of azelastine and some selected drugs on mucociliary clearance. Lung. 1992; 170:201–209.
Article
20. Merkus FW, Schüsler-van Hees MT. Influence of levocabastine suspension on ciliary beat frequency and mucociliary clearance. Allergy. 1992; 47:230–233.
Article
21. Hofmann T, Wolf G, Koidl B. Effect of topical corticosteroids and topical antihistaminics on ciliary epithelium of human nasal mucosa in vitro . HNO. 1998; 46:146–151.
22. Alberty J, Stoll W. The effect of antiallergic intranasal formulations on ciliary beat frequency of human nasal epithelium in vitro . Allergy. 1998; 53:986–989.
23. Passàli D, Salerni L, Passàli GC, Passàli FM, Bellussi L. Nasal decongestants in the treatment of chronic nasal obstruction: efficacy and safety of use. Expert Opin Drug Saf. 2006; 5:783–790.
Article
24. Teng Y, Zhang X, Xu G, Cai Q, Xu J. The observation of the ciliotoxicity of nasal mucosa with nasal decongestant. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2005; 19:824–826.
25. Zhang L, Han D, Song X, Wang H, Wang K, Liu Z. Effects of ephedrine on human nasal ciliary beat frequency. ORL J Otorhinolaryngol Relat Spec. 2008; 70:91–96.
Article
26. Phillips PP, McCaffrey TV, Kern EB. Third place--Resident Clinical Science Award 1990. The in vivo and in vitro effect of phenylephrine (Neo Synephrine) on nasal ciliary beat frequency and mucociliary transport. Otolaryngol Head Neck Surg. 1990; 103:558–565.
27. Min YG, Yun YS, Rhee CS, Sung MW, Lee KS, Ju MS, et al. Effects of phenylephrine on ciliary beat in human nasal respiratory epithelium: quantitative measurement by video-computerized analysis. Laryngoscope. 1998; 108:418–421.
Article
28. Hofmann T, Wolf G, Koidl B. In vitro studies of the effect of vasoconstrictor nose drops on ciliary epithelium of human nasal mucosa. Laryngorhinootologie. 1995; 74:564–567.
29. Curtis LN, Carson JL. Computer-assisted video measurement of inhibition of ciliary beat frequency of human nasal epithelium in vitro by xylometazoline. J Pharmacol Toxicol Methods. 1992; 28:1–7.
30. Armengot M, Basterra J, Garcia-Bartual E. The influence of anesthetics and vasoconstrictors on nasal mucociliary transport. Acta Otorhinolaryngol Belg. 1989; 43:149–156.
31. Mickenhagen A, Siefer O, Neugebauer P, Stennert E. The influence of different alpha-sympathomimetic drugs and benzalkoniumchlorid on the ciliary beat frequency of in vitro cultured human nasal mucosa cells. Laryngorhinootologie. 2008; 87:30–38.
32. Zhang L, Han D, Song X, Wang K, Wang H. Effect of oxymetazoline on healthy human nasal ciliary beat frequency measured with high-speed digital microscopy and mucociliary transport time. Ann Otol Rhinol Laryngol. 2008; 117:127–133.
Article
33. Mallants R, Jorissen M, Augustijns P. Beneficial effect of antibiotics on ciliary beat frequency of human nasal epithelial cells exposed to bacterial toxins. J Pharm Pharmacol. 2008; 60:437–443.
Article
34. Remigius UA, Jorissen M, Willems T, Kinget R, Verbeke N. Mechanistic appraisal of the effects of some protease inhibitors on ciliary beat frequency in a sequential cell culture system of human nasal epithelium. Eur J Pharm Biopharm. 2003; 55:283–289.
Article
35. Gosepath J, Grebneva N, Mossikhin S, Mann WJ. Topical antibiotic, antifungal, and antiseptic solutions decrease ciliary activity in nasal respiratory cells. Am J Rhinol. 2002; 16:25–31.
Article
36. Birk R, Aderhold C, Wenzel A, Eschenhagen T, Kramer B, Hörmann K, et al. Mupirocin reduces ciliary beat frequency of human nasal epithelial cells. Eur Arch Otorhinolaryngol. 2016; 273:4335–4341.
Article
37. Kim JH, Rimmer J, Mrad N, Ahmadzada S, Harvey RJ. Betadine has a ciliotoxic effect on ciliated human respiratory cells. J Laryngol Otol. 2015; 129:Suppl 1. S45–S50.
Article
38. Boon M, Jorissen M, Jaspers M, Augustijns P, Vermeulen FL, Proesmans M, et al. The influence of nebulized drugs on nasal ciliary activity. J Aerosol Med Pulm Drug Deliv. 2016; 29:378–385.
Article
39. Han LY, Wilson R, Slater S, Rutman A, Read RC, Snell NJ, et al. In vitro and in vivo effects of ribavirin on human respiratory epithelium. Thorax. 1990; 45:100–104.
40. Dolovich MB, Eng P, Mahony JB, Chambers C, Newhouse MT, Chernesky MA. Ciliary function, cell viability, and in vitro effect of ribavirin on nasal epithelial cells in acute rhinorrhea. Chest. 1992; 102:284–287.
41. Dimova S, Mugabowindekwe R, Willems T, Brewster ME, Noppe M, Ludwig A, et al. Safety-assessment of 3-methoxyquercetin as an antirhinoviral compound for nasal application: effect on ciliary beat frequency. Int J Pharm. 2003; 263:95–103.
Article
42. Hofmann T, Reinisch S, Gerstenberger C, Koele W, Gugatschka M, Wolf G. Influence of topical antifungal drugs on ciliary beat frequency of human nasal mucosa: an in vitro study. Laryngoscope. 2010; 120:1444–1448.
43. Jiao J, Zhang L. Effect of Amphotericin B on human nasal ciliary beat frequency. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016; 51:573–577.
44. Cho DY, Hoffman KJ, Gill GS, Lim DJ, Skinner D, Mackey C, et al. Protective and antifungal properties of Nanodisk-Amphotericin B over commercially available Amphotericin B. World J Otorhinolaryngol Head Neck Surg. 2017; 3:2–8.
Article
45. Jiang RS, Twu CW, Liang KL. Efficacy of nasal irrigation with 200 μg/mL amphotericin B after functional endoscopic sinus surgery: a randomized, placebo-controlled, double-blind study. Int Forum Allergy Rhinol. 2018; 8:41–48.
Article
46. Uchenna Agu R, Jorissen M, Willems T, Van den Mooter G, Kinget R, Verbeke N, et al. Safety assessment of selected cyclodextrins - effect on ciliary activity using a human cell suspension culture model exhibiting in vitro ciliogenesis. Int J Pharm. 2000; 193:219–226.
47. Haffejee N, Du Plessis J, Müller DG, Schultz C, Kotzé AF, Goosen C. Intranasal toxicity of selected absorption enhancers. Pharmazie. 2001; 56:882–888.
48. Aspden TJ, Mason JD, Jones NS, Lowe J, Skaugrud O, Illum L. Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J Pharm Sci. 1997; 86:509–513.
49. Bonengel S, Bernkop-Schnürch A. Thiomers--from bench to market. J Control Release. 2014; 195:120–129.
50. Palmberger TF, Augustijns P, Vetter A, Bernkop-Schnürch A. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells. Drug Dev Ind Pharm. 2011; 37:1455–1462.
Article
51. Mallants R, Jorissen M, Augustijns P. Effect of preservatives on ciliary beat frequency in human nasal epithelial cell culture: single versus multiple exposure. Int J Pharm. 2007; 338:64–69.
Article
52. Rizzo JA, Medeiros D, Silva AR, Sarinho E. Benzalkonium chloride and nasal mucociliary clearance: a randomized, placebo-controlled, crossover, double-blind trial. Am J Rhinol. 2006; 20:243–247.
Article
53. Bernstein IL. Is the use of benzalkonium chloride as a preservative for nasal formulations a safety concern? A cautionary note based on compromised mucociliary transport. J Allergy Clin Immunol. 2000; 105:39–44.
Article
54. Riechelmann H, Deutschle T, Stuhlmiller A, Gronau S, Bürner H. Nasal toxicity of benzalkonium chloride. Am J Rhinol. 2004; 18:291–299.
Article
55. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012; 50:1–12.
Article
56. Keojampa BK, Nguyen MH, Ryan MW. Effects of buffered saline solution on nasal mucociliary clearance and nasal airway patency. Otolaryngol Head Neck Surg. 2004; 131:679–682.
Article
57. Roberts G, Xatzipsalti M, Borrego LM, Custovic A, Halken S, Hellings PW, et al. Paediatric rhinitis: position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 2013; 68:1102–1116.
Article
58. Bencova A, Vidan J, Rozborilova E, Kocan I. The impact of hypertonic saline inhalation on mucociliary clearance and nasal nitric oxide. J Physiol Pharmacol. 2012; 63:309–313.
59. Satdhabudha A, Poachanukoon O. Efficacy of buffered hypertonic saline nasal irrigation in children with symptomatic allergic rhinitis: a randomized double-blind study. Int J Pediatr Otorhinolaryngol. 2012; 76:583–588.
Article
60. Hauptman G, Ryan MW. The effect of saline solutions on nasal patency and mucociliary clearance in rhinosinusitis patients. Otolaryngol Head Neck Surg. 2007; 137:815–821.
Article
61. Michel O, Dreßler AK. Hypertonic (3%) vs. isotonic brine nosespray--a controlled study. Laryngorhinootologie. 2011; 90:206–210.
62. Ural A, Oktemer TK, Kizil Y, Ileri F, Uslu S. Impact of isotonic and hypertonic saline solutions on mucociliary activity in various nasal pathologies: clinical study. J Laryngol Otol. 2009; 123:517–521.
Article
63. Boek WM, Keleş N, Graamans K, Huizing EH. Physiologic and hypertonic saline solutions impair ciliary activity in vitro . Laryngoscope. 1999; 109:396–399.
64. Min YG, Lee KS, Yun JB, Rhee CS, Rhyoo C, Koh YY, et al. Hypertonic saline decreases ciliary movement in human nasal epithelium in vitro . Otolaryngol Head Neck Surg. 2001; 124:313–316.
65. Ünal M, Görür K, Özcan C. Ringer-Lactate solution versus isotonic saline solution on mucociliary function after nasal septal surgery. J Laryngol Otol. 2001; 115:796–797.
Article
66. Low TH, Woods CM, Ullah S, Carney AS. A double-blind randomized controlled trial of normal saline, lactated Ringer's, and hypertonic saline nasal irrigation solution after endoscopic sinus surgery. Am J Rhinol Allergy. 2014; 28:225–231.
Article
67. Süslü N, Bajin MD, Süslü AE, Oğretmenoğlu O. Effects of buffered 2.3%, buffered 0.9%, and non-buffered 0.9% irrigation solutions on nasal mucosa after septoplasty. Eur Arch Otorhinolaryngol. 2009; 266:685–689.
Article
68. Fooanant S, Chaiyasate S, Roongrotwattanasiri K. Comparison on the efficacy of dexpanthenol in sea water and saline in postoperative endoscopic sinus surgery. J Med Assoc Thai. 2008; 91:1558–1563.
69. Bonnomet A, Luczka E, Coraux C, de Gabory L. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline. Int Forum Allergy Rhinol. 2016; 6:1062–1068.
Article
70. Laberko EL, Bogomil'sky MR, Soldatsky YL, Pogosova IE. The influence of an isotonic solution containing benzalkonium chloride and a hypertonic seawater solution on the function of ciliary epithelium from the nasal cavity in vitro . Vestn Otorinolaringol. 2016; 81:49–52.
Full Text Links
  • AAIR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr