2. Santamaria-Puerto G, Hernandez-Rincon E. Mobile medical applications: definitions, benefits and risks. Salud Uninorte. 2015; 31(3):599–607.
Article
3. Ramirez L, Rodriguez Y. mHealth mobile application for energy balance. J Ind Neotechnol. 2016; 3(2):40–47.
4. Boateng G, Batsis JA, Halter R, Kotz D. ActivityAware: an app for real-time daily activity level monitoring on the amulet wrist-worn device. In : Proceedings of 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops); 2017 Mar 13–17; Kona, HI. p. 431–435.
5. Lopez LJ, Alvarez DA. SMCa: a mobile cardiac monitoring system. Ciencia Y Poder Aereo. 2013; 8(1):91–96.
6. Lysis: software for clinical laboratory with web and mobile applications [Internet]. Bogota, Colombia: Lysis;c2013. cited at 2018 Oct 15. Available from:
http://lysis.co/.
7. Pereira M, Almeida AM, Caixinha H. Exercit@rt mobile: monitoring of pulmonar rehabilitation in COPD. In : Proceedings of International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW); 2016 Dec 1–3; Vila Real, Portugal. p. 1–8.
8. Cifuentes Y, Beltran L, Ramirez L. Analysis of security vulnerabilities for mobile health applications. World Acad Sci Eng Technol Int J Health Med Eng. 2015; 9(9):1067–1072.
10. Grau I, Kostov B, Gallego JA, Grajales Iii F, Fernandez-Luque L, Siso-Almirall A. Assessment method for mobile health applications in Spanish: the iSYScore index. Semergen. 2016; 42(8):575–583.
11. Vloria Nunez C, Caballero-Uribe CV. Advancements and challenges for implementing telemedicine and other information technologies (TICs). Salud Uninorte. 2014; 30(2):6–8.
12. Miller NE, Strath SJ, Swartz AM, Cashin SE. Estimating absolute and relative physical activity intensity across age via accelerometry in adults. J Aging Phys Act. 2010; 18(2):158–170.
Article
13. Brooks AG, Gunn SM, Withers RT, Gore CJ, Plummer JL. Predicting walking METs and energy expenditure from speed or accelerometry. Med Sci Sports Exerc. 2005; 37(7):1216–1223.
Article
14. Marins JC, Fernandez MD, Peinado PJ. Accuracy of different equation to predict maximal heart rate in cycle ergometer. Arch Med Deporte. 2013; 30(1):14–20.
15. Luo X. Analyzing the correlations between the uninsured and diabetes prevalence rates in geographic regions in the United States. In : Proceedings of 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE); 2017 Jul 17–19; Philadelphia, PA. p. 44–50.
16. Zaghbani N, Nakajima M, Nabetani H, Hafiane A. Modeling of reverse osmosis flux of aqueous solution containing glucose. Korean J Chem Eng. 2017; 34(2):407–412.
Article
17. Jeon E, Park HA. Factors affecting acceptance of smartphone application for management of obesity. Healthc Inform Res. 2015; 21(2):74–82.
Article
18. Gregoski MJ, Mueller M, Vertegel A, Shaporev A, Jackson BB, Frenzel RM, et al. Development and validation of a smartphone heart rate acquisition application for health promotion and wellness telehealth applications. Int J Telemed Appl. 2012; 2012:696324.
Article