Nat Prod Sci.  2018 Dec;24(4):272-283. 10.20307/nps.2018.24.4.272.

Nematicidal Compounds from the Leaves of Schinus terebinthifolius Against Root-knot Nematode, Meloidogyne incognita Infecting Tomato

Affiliations
  • 1Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia. fatma_maar@yahoo.com
  • 2Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
  • 3Department of Nematology, Plant Pathology Res. Inst., Agric. Res. Center, Giza, Egypt.

Abstract

The root-knot nematode, Meloidogyne incognita caused a serious damage to many plants. The phenolic components of the leaves of Schinus terebinthifolius were investigated as potential nematicidal agents for M. incognita. Nine compounds were isolated and characterized as viz., 1,2,3,4,6-pentagalloyl glucose (1), kaempferol-3-O-α-L-rhamnoside (Afzelin) (2), quercetin-3-O-α-L-rhamnoside (Quercetrin) (3), myricetin (4), myricetin-3-O-α-L-rhamnoside (Myricetrin) (5), methylgallate (6), protocatechuic acid (7), quercetin (8), and gallic acid (9) using nuclear magnetic resonance (NMR) spectroscopy. Compound 1 showed pronounced nematicidal activity compared to Oxamyl as a positive control. It showed the lowest eggs-hatchability (34%) and the highest mortality in nematode population (21% after 72 hours of treatment) at a concentration of 200 µg/mL. It exhibited the best suppressed total nematode population, root galling and number of eggmasses in infected tomato plants. The total carbohydrates and proteins were also significantly induced by 1 with reduction in total phenolics and increase in defense-related proteins. Thus, compound 1 could be a promising, more safe and effective natural nematicidal agent for the control of root-knot nematodes.

Keyword

Meloidogyne incognita; Schinus terebinthifolius; pentagalloyl glucose; nematicidal activity; root-knot nematode

MeSH Terms

Anacardiaceae*
Carbohydrates
Gallic Acid
Glucose
Lycopersicon esculentum*
Magnetic Resonance Spectroscopy
Mortality
Phenol
Quercetin
Spectrum Analysis
Tylenchoidea*
Carbohydrates
Gallic Acid
Glucose
Phenol
Quercetin

Figure

  • Fig. 1 Structures of the isolated compounds.

  • Fig. 2 Isolation scheme of compounds 1 – 6 from the aqueous extract left after partitioning of the total MeOH extract using pet.ether, CH2Cl2 and EtOAc, respectively.

  • Fig. 3 Isolation scheme of compounds 4, 6 and 7 – 9 from the ethyl acetate extract.

  • Fig. 4 Impact of treatments with EtOAc extracts and compounds (1, 6, 7), isolated from Shinus terbenthifolius leaves, on egg hatchability of root-knot nematode Meloidogyne incognita under laboratory conditions.

  • Fig. 5 Impact of treatments with EtOAc extracts and compounds (1, 6, 7), isolated from Shinus terbenthifolius leaves, against larvae of root-knot nematode Meloidogyne incognita under laboratory conditions.

  • Fig. 6 Impact of compounds 1, isolated from Shinus terbenthifolius leaves, on plant growth response of tomato var. 162 infected with Meloidogyne incognita under greenhouse conditions (27 ± 3℃).

  • Fig. 7 Impact of compound 1 isolated from Schinus terbenthifolius leaves, on the reproduction of Meloidogyne incognita infecting tomato var. 162 grown under greenhouse conditions at 27 ± 3℃. Reproduction factor (RF), Root gall index (RGI) or egg-masses index (EI) were determined according to the scale given by Taylor and Sasser (1978).


Reference

1. Amorim MMR, Santos LC. Rev Bras Gincecol Obstet. 2003; 25:95–102.
2. de Lima MR, Luna JD-S, dos Santos AF, de Andrade MCC, et al. J Ethnopharmacol. 2006; 105:137–147.
3. Johann S, Pizzolatti M, Donnici CL, de Resende MA. Braz J Microbiol. 2007; 38:632–637.
4. Bernardes NR, Heggdorne-Araújo M, Borges IFJC, Almeida FM, Amaral EP, Lasunskaia EB, Muzitano MF, Oliveira DB. Rev Bras Farmacogn. 2014; 24:644–650.
5. Johann S, Silva DL, Martins CVB, Zani CL, Pizzolatti MG, Resende MA. World J Microbiol Biotechnol. 2008; 24:2459–2464.
6. Johann S, Sá NP, Lima LARS, Cisalpino PS, Cota BB, Alves TMA, Siqueira EP, Zani CL. Ann Clin Microbiol Antimicrob. 2010; 9:30–36.
7. Carvalho MG, Melo AGN, Aragao CFS, Raffin FN, Moura TFAL. Rev Bras Pl Med. 2013; 15:158–169.
8. Fedel-Miyasato LES, Kassuya CAL, Auharek SA, Formagio ASN, Cardoso CAL, Mauro MO, Cunha-Laura AL, Monreal ACD, Vieira MC, Oliveira RJ. Rev Bras Farmacogn. 2014; 24:565–575.
9. Quave CL, Plano LRW, Bennett BC. Planta Med. 2008; 74:43.
10. Queires LC, Fauvel-Lafètve F, Terry S, De la Taille A, Kouyoumdjian JC, Chopin DK, Vacherot F, Rodrigues LE, Crépin M. Anticancer Res. 2006; 26:379–387.
11. Cavalher-Machado SC, Rosas EC, Brito FA, Heringe AP, de Oliveira RR, Ka-Plan MA, Figueiredo MR, Henriques M. Int Immunopharmacol. 2008; 8:1552–1560.
12. Santana JS, Lago PSJHG, Matsuo AL. Quim Nova. 2012; 35:2245–2248.
13. Carvalho MG, Freire FD, Raffin FN, Aragão CFS, Moura TFAL. Chromatographia. 2009; 69:249–253.
14. Farag SF. Bull Pharm Sci. 2008; 31:319–329.
15. Heringer AP, Oliveira RR, Figueiredo MR, Kaplan MA. 30a reunião anual da sociedade brasileira de química. 2007.
16. Hayashi T, Nagayama K, Arisawa M, Shimizu M, Suzuki S, Yoshizaki M, Morita N, Ferro E, Basualdo I, Berganza LH. J Nat Prod. 1989; 52:210–211.
17. Morais TR, da Costa-Silva TA, Tempone AG, Borborema SET, Scotti MT, de Sousa RMF, Araujo ACC, de Oliveira A, de Morais SAL, Sartorelli P, Lago JHG. Molecules. 2014; 19:5761–5776.
18. Campello JP, Marsaioli AJ. Phytochemistry. 1975; 14:2300–2302.
19. Lloyd HA, Jaouni TM, Evans SL, Morton JF. Phytochemistry. 1977; 16:1301–1302.
20. Sasser JN, Freckman DW. Veech JA, Dickson DW, editors. World perspective on nematology: The role of the society, in Vistas on Nematology. Hyattsville, Maryland: A Commemoration of the 25th Anniversary of the Society of Nematologists, Society of Nematologists, Inc.;1987. p. 7–14.
21. Hussey RS, Barker KR. Plant Dis Reptr. 1973; 57:1925–1928.
22. Goodey JB. Laboratory methods for work with plant and soil nematodes. London: Tech. Bull., 2, Min. Agric. Fish Ed;1957. p. 47.
23. Taylor AL, Sasser JN. Biology, identification and control of root-knot Nematodes (Meloidogyne spp.). Raleigh. N.C.: Coop. Pub. Dept. Pl. pathol. North Carolina State Univ. and U.S. Agency Int. Dev.;1978. p. 111.
24. Patel DJ, Patel HV, Patel SK, Patel BA. Indian J Pl Protect. 1993; 21:242–244.
25. Maxwell DP, Bateman DF. Phytopathology. 1967; 57:132–136.
Article
26. Bradford MM. Anal Biochem. 1976; 72:248–254.
27. Thomas W, Dutcher RA. J Am Chem Soc. 1924; 46:1662–1669.
28. Kaur C, Kapoor HC. Int J Food Sci Technol. 2002; 37:153–161.
29. Amako A, Ghen GX, Asala K. Plant Cell Physiol. 1994; 53:497–507.
30. Coseteng MY, Lee CY. J Food Sci. 1987; 52:985–989.
31. Gomez KA, Gomez AA. Statistical Procedures for Agriculture Research. 2nd Ed. New York: John Wiley & Sons. Inc;1984. p. 101.
32. Duncan DB. Biometrics. 1955; 11:1–42.
33. Dos Santos RT, Hiramoto LL, Lago JHG, Sartorelli P, Tempone AG, Pinto EG, Lorenzi H. Quim Nova. 2012; 35:2229–2232.
34. Da Silva MM, Iriguchi EKK, Kassuya CAL, Vieira MD-C, Foglio MA, de Carvalho JE, Ruiz ALTG, Souza KD-P, Formagio ASN. Rev Bras Farmacogn. 2017; 27:445–452.
35. Ceruks M, Romoff P, Favero AO, Lago JHG. Quim Nova. 2007; 30:597–599.
36. Agrawal PK. Studies in Organic Chemistry Carbon-13 NMR of Flavonoids. Amsterdam: Elsevier;1989. p. 334. p. 336. p. 338.
37. Zhang Z, Liao L, Moore J, Wu T, Wan Z. Food Chem. 2009; 113:160–165.
38. Gautam SK, Poddar AN. Int J Curr Microbiol App Sci. 2014; 3:470–478.
39. El-beltagi HS, Farahat AA, Alsayed AA, Mahfoud NA. Not Bot Horti Agrobo. 2012; 40:132–142.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr