J Korean Med Assoc.  2019 Jan;62(1):25-36. 10.5124/jkma.2019.62.1.25.

Treatment of pulmonary tuberculosis

Affiliations
  • 1Division of Pulmonary Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea. medics27@cau.ac.kr

Abstract

Tuberculosis (TB) remains the world's leading cause of death from a single infectious disease. In addition, the incidence of TB is high in South Korea. Effective TB control requires early diagnosis and initiation of appropriate treatment. Therefore, it is very important for clinicians to understand evidence-based practical recommendations and to be familiar with up-to-date treatment regimens. In this review, we first describe anti-TB drugs, including new drugs. Secondly, we discuss the treatment of drug-susceptible TB. Finally, we present treatment strategies for drug-resistant TB, which is divided into isoniazid-resistant TB, rifampin-resistant TB, and multi-drug resistant TB. For the treatment of drug-susceptible TB, we recommend 2 months of 4 drugs (isoniazid, rifampin, ethambutol, and pyrazinamide) followed by 4 months of 2 drugs (isoniazid and rifampin). For the treatment of isoniazid-resistant TB, we recommend 6 to 9 months of 4 drugs (rifampin, ethambutol, pyrazinamide, and levofloxacin or moxifloxacin). For the treatment of multi-drug resistant TB (MDR-TB), we recommend a minimum of 5 secondary drugs, including an injectable agent and quinolone. Although the World Health Organization recommended a shorter MDR-TB regimen in 2016, the Korean guidelines for tuberculosis have not yet accepted the shorter regimen. The treatment regimen of TB differs depending on the drug resistance pattern. Therefore, it is important to treat TB properly after confirming the drug resistance pattern. In addition, as new drugs are developed, new treatment guidelines for MDR-TB should be developed that are appropriate for circumstances in Korea.

Keyword

Tuberculosis; Therapeutics; Guideline; Tuberculosis, multidrug-resistant; World Health Organization

MeSH Terms

Cause of Death
Communicable Diseases
Drug Resistance
Early Diagnosis
Ethambutol
Incidence
Korea
Levofloxacin
Pyrazinamide
Rifampin
Tuberculosis
Tuberculosis, Multidrug-Resistant
Tuberculosis, Pulmonary*
World Health Organization
Ethambutol
Pyrazinamide
Rifampin

Reference

1. World Health Organizaton. Global tuberculosis report: executive summary 2018 [Internet]. Geneva: World Health Organizaton;2018. cited 2018 Dec 19. Available from: http://www.who.int/tb/publications/global_report/GraphicExecutiveSummary.pdf.
2. Kim HJ. Current status of tuberculosis in Korea. Korean J Med. 2012; 82:257–262.
Article
3. Korea National Tuberculosis Association. Tuberculosis in Korea [Internet]. Seoul: Korea National Tuberculosis Association;2018. cited 2018 Dec 19. Available from: https://www.knta.or.kr/tbInfo/tbCondition/tbCondition.asp.
4. Korea Centers for Disease Control and Prevention. The second tuberculosis management master plan [Internet]. Cheongju: Korea Centers for Disease Control and Prevention;2018. cited 2018 Dec 19. Available from: http://tbzero.cdc.go.kr/tbzero/main.do?pageEvent=N.
5. Korea Academy of Tuberculosis and Respiratory Diseases. Guidelines for treatment [Internet]. Seoul: Korea Academy of Tuberculosis and Respiratory Diseases;2017. cited 2018 Dec 19. Available from: http://www.lungkorea.org/bbs/?code=guide.
6. World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis: 2016 update [Internet]. Geneva: World Health Organization;2016. cited 2018 Dec 19. Available from: http://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf?sequence=1.
7. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O'Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR, Vernon AA. American Thoracic Society. Centers for Disease Control and Prevention and the Infectious Diseases Society. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003; 167:603–662.
Article
8. World Health Organization. WHO treatment guidelines for isoniazid-resistant tuberculosis: supplement to the WHO treatment guidelines for drug-resistant tuberculosis [Internet]. Geneva: World Health Organization;2018. cited 2018 Dec 18. Available from: https://www.who.int/tb/publications/2018/WHO_guidelines_isoniazid_resistant_TB/en/.
9. World Health Organization. Treatment of tuberculosis: guidelines [Internet]. Geneva: World Health Organization;2010. cited 2018 Dec 19. Available from: https://www.who.int/tb/publications/2010/9789241547833/en/.
10. World Health Organization. Rapid communication: key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB) [Internet]. Geneva: World Health Organization;2018. cited 2018 Dec 19. Available from: https://www.who.int/tb/publications/2018/rapid_communications_MDR/en/.
11. Bernadou J, Nguyen M, Meunier B. The mechanism of action of isoniazid: a chemical model of activation. Ann Pharm Fr. 2001; 59:331–337.
12. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Mol Microbiol. 2006; 62:1220–1227.
Article
13. Park IN, Hong SB, Oh YM, Lim CM, Lee SD, Koh Y, Kim WS, Kim DS, Kim WD, Shim TS. Comparison of effectiveness and adverse reactions between isoniazid 300 mg and 400 mg in Korean patients with pulmonary tuberculosis. Tuberc Respir Dis. 2006; 60:44–48.
Article
14. Reitman ML, Chu X, Cai X, Yabut J, Venkatasubramanian R, Zajic S, Stone JA, Ding Y, Witter R, Gibson C, Roupe K, Evers R, Wagner JA, Stoch A. Rifampin's acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug-drug interaction trial design. Clin Pharmacol Ther. 2011; 89:234–242.
Article
15. Chamberlain PD, Sadaka A, Berry S, Lee AG. Ethambutol optic neuropathy. Curr Opin Ophthalmol. 2017; 28:545–551.
Article
16. Kempker RR, Heinrichs MT, Nikolaishvili K, Sabulua I, Bablishvili N, Gogishvili S, Avaliani Z, Tukvadze N, Little B, Bernheim A, Read TD, Guarner J, Derendorf H, Peloquin CA, Blumberg HM, Vashakidze S. Lung tissue concentrations of pyrazinamide among patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother. 2017; 61.
Article
17. Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16s ribosomal RNA methyltransferases. Infect Dis Clin North Am. 2016; 30:523–537.
18. Wrzesniok D, Rok J, Beberok A, Rzepka Z, Respondek M, Pilawa B, Zdybel M, Delijewski M, Buszman E. Kanamycin induces free radicals formation in melanocytes: An important factor for aminoglycosides ototoxicity. J Cell Biochem. 2018; 11. 21. [Epub]. DOI: 10.1002/jcb.26817.
Article
19. Wargo KA, Edwards JD. Aminoglycoside-induced nephrotoxicity. J Pharm Pract. 2014; 27:573–577.
Article
20. Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB Treatment-2017. Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JC, Anderson LF, Baghaei P, Bang D, Barry PM, Bastos ML, Behera D, Benedetti A, Bisson GP, Boeree MJ, Bonnet M, Brode SK, Brust JCM, Cai Y, Caumes E, Cegielski JP, Centis R, Chan PC, Chan ED, Chang KC, Charles M, Cirule A, Dalcolmo MP, D'Ambrosio L, de Vries G, Dheda K, Esmail A, Flood J, Fox GJ, Fréchet-Jachym M, Fregona G, Gayoso R, Gegia M, Gler MT, Gu S, Guglielmetti L, Holtz TH, Hughes J, Isaakidis P, Jarlsberg L, Kempker RR, Keshavjee S, Khan FA, Kipiani M, Koenig SP, Koh WJ, Kritski A, Kuksa L, Kvasnovsky CL, Kwak N, Lan Z, Lange C, Laniado-Laborín R, Lee M, Leimane V, Leung CC, Leung EC, Li PZ, Lowenthal P, Maciel EL, Marks SM, Mase S, Mbuagbaw L, Migliori GB, Milanov V, Miller AC, Mitnick CD, Modongo C, Mohr E, Monedero I, Nahid P, Ndjeka N, O'Donnell MR, Padayatchi N, Palmero D, Pape JW, Podewils LJ, Reynolds I, Riekstina V, Robert J, Rodriguez M, Seaworth B, Seung KJ, Schnippel K, Shim TS, Singla R, Smith SE, Sotgiu G, Sukhbaatar G, Tabarsi P, Tiberi S, Trajman A, Trieu L, Udwadia ZF, van der Werf TS, Veziris N, Viiklepp P, Vilbrun SC, Walsh K, Westenhouse J, Yew WW, Yim JJ, Zetola NM, Zignol M, Menzies D. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018; 392:821–834.
Article
21. Koh WJ, Lee SH, Kang YA, Lee CH, Choi JC, Lee JH, Jang SH, Yoo KH, Jung KH, Kim KU, Choi SB, Ryu YJ, Chan Kim K, Um S, Kwon YS, Kim YH, Choi WI, Jeon K, Hwang YI, Kim SJ, Lee YS, Heo EY, Lee J, Ki YW, Shim TS, Yim JJ. Comparison of levofloxacin versus moxifloxacin for multi-drug-resistant tuberculosis. Am J Respir Crit Care Med. 2013; 188:858–864.
Article
22. Kang YA, Shim TS, Koh WJ, Lee SH, Lee CH, Choi JC, Lee JH, Jang SH, Yoo KH, Jung KH, Kim KU, Choi SB, Ryu YJ, Kim KC, Um S, Kwon YS, Kim YH, Choi WI, Jeon K, Hwang YI, Kim SJ, Lee HK, Heo E, Yim JJ. Choice between levofloxacin and moxifloxacin and multidrug-resistant tuberculosis treatment outcomes. Ann Am Thorac Soc. 2016; 13:364–370.
Article
23. Curry International Tuberculosis Center. Drug-resistant tuberculosis: a survival guide for clinicians [Internet]. Oakland: Curry International Tuberculosis Center;2016. cited 2018 Dec 19. Available from: https://www.currytbcenter.ucsf.edu/products/cover-pages/drug-resistant-tuberculosis-survival-guide-clinicians-3rd-edition.
24. Prieri M, Frita R, Probst N, Sournia-Saquet A, Bourotte M, Deprez B, Baulard AR, Willand N. Efficient analoging around ethionamide to explore thioamides bioactivation pathways triggered by boosters in mycobacterium tuberculosis. Eur J Med Chem. 2018; 159:35–46.
Article
25. Scardigli A, Caminero JA, Sotgiu G, Centis R, D'Ambrosio L, Migliori GB. Efficacy and tolerability of ethionamide versus prothionamide: a systematic review. Eur Respir J. 2016; 48:946–952.
Article
26. Dulaney EL. 1-Aminoethylphosphonic acid, an inhibitor of bacterial cell wall synthesis. J Antibiot (Tokyo). 1970; 23:567–568.
Article
27. Neuhaus FC, Hammes WP. Inhibition of cell wall biosynthesis by analogues and alanine. Pharmacol Ther. 1981; 14:265–319.
28. Howe MD, Kordus SL, Cole MS, Bauman AA, Aldrich CC, Baughn AD, Minato Y. Methionine antagonizes para-aminosalicylic acid activity via affecting folate precursor biosynthesis in mycobacterium tuberculosis. Front Cell Infect Microbiol. 2018; 8:399.
Article
29. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, Via LE, Goldfeder LC, Kang E, Jin B, Park H, Kwak H, Kim H, Jeon HS, Jeong I, Joh JS, Chen RY, Olivier KN, Shaw PA, Follmann D, Song SD, Lee JK, Lee D, Kim CT, Dartois V, Park SK, Cho SN, Barry CE 3rd. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012; 367:1508–1518.
Article
30. Cox H, Ford N. Linezolid for the treatment of complicated drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2012; 16:447–454.
Article
31. Koh WJ, Kang YR, Jeon K, Kwon OJ, Lyu J, Kim WS, Shim TS. Daily 300 mg dose of linezolid for multidrug-resistant and extensively drug-resistant tuberculosis: updated analysis of 51 patients. J Antimicrob Chemother. 2012; 67:1503–1507.
Article
32. Park IN, Hong SB, Oh YM, Kim MN, Lim CM, Lee SD, Koh Y, Kim WS, Kim DS, Kim WD, Shim TS. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis. J Antimicrob Chemother. 2006; 58:701–704.
Article
33. Bolhuis MS, Akkerman OW, Sturkenboom MGG, Ghimire S, Srivastava S, Gumbo T, Alffenaar JC. Linezolid-based regimens for multidrug-resistant tuberculosis (TB): a systematic review to establish or revise the current recommended dose for TB treatment. Clin Infect Dis. 2018; 67:Suppl 3. S327–S335.
Article
34. Barry PJ, O'Connor TM. Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem. 2007; 14:2000–2008.
Article
35. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park SK, Shim TS, Suh GY, Danilovits M, Ogata H, Kurve A, Chang J, Suzuki K, Tupasi T, Koh WJ, Seaworth B, Geiter LJ, Wells CD. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012; 366:2151–2160.
Article
36. Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, Cirule A, Leimane V, Kurve A, Levina K, Geiter LJ, Manissero D, Wells CD. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J. 2013; 41:1393–1400.
Article
37. World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis: interim policy guidance [Internet]. Genava: World Health Organization;2014. cited 2018 Dec 19. Available from: http://apps.who.int/iris/bitstream/handle/10665/137334/WHO_HTM_TB_2014.23_eng.pdf?sequence=1.
38. Shimokawa Y, Sasahara K, Koyama N, Kitano K, Shibata M, Yoda N, Umehara K. Metabolic mechanism of delamanid, a new anti-tuberculosis drug, in human plasma. Drug Metab Dispos. 2015; 43:1277–1283.
Article
39. Sasahara K, Shimokawa Y, Hirao Y, Koyama N, Kitano K, Shibata M, Umehara K. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos. 2015; 43:1267–1276.
Article
40. Lewis JM, Sloan DJ. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther Clin Risk Manag. 2015; 11:779–791.
41. Haagsma AC, Podasca I, Koul A, Andries K, Guillemont J, Lill H, Bald D. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One. 2011; 6:e23575.
Article
42. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Mc Neeley DF. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med. 2009; 360:2397–2405.
Article
43. Diacon AH, Pym A, Grobusch MP, de los Rios JM, Gotuzzo E, Vasilyeva I, Leimane V, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M, Lounis N, Meyvisch P, De Paepe E, van Heeswijk RP, Dannemann B. TMC207-C208 Study Group. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014; 371:723–732.
Article
44. Schnippel K, Ndjeka N, Maartens G, Meintjes G, Master I, Ismail N, Hughes J, Ferreira H, Padanilam X, Romero R, Te Ismail J, Conradie F. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospec-tive cohort study. Lancet Respir Med. 2018; 6:699–706.
Article
45. Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment-2017. Ahmad N, Ahuja SD, Akkerman OW, Alffenaar JC, Anderson LF, Baghaei P, Bang D, Barry PM, Bastos ML, Behera D, Benedetti A, Bisson GP, Boeree MJ, Bonnet M, Brode SK, Brust JCM, Cai Y, Caumes E, Cegielski JP, Centis R, Chan PC, Chan ED, Chang KC, Charles M, Cirule A, Dalcolmo MP, D'Ambrosio L, de Vries G, Dheda K, Esmail A, Flood J, Fox GJ, Fréchet-Jachym M, Fregona G, Gayoso R, Gegia M, Gler MT, Gu S, Guglielmetti L, Holtz TH, Hughes J, Isaakidis P, Jarlsberg L, Kempker RR, Keshavjee S, Khan FA, Kipiani M, Koenig SP, Koh WJ, Kritski A, Kuksa L, Kvasnovsky CL, Kwak N, Lan Z, Lange C, Laniado-Laborin R, Lee M, Leimane V, Leung CC, Leung EC, Li PZ, Lowenthal P, Maciel EL, Marks SM, Mase S, Mbuagbaw L, Migliori GB, Milanov V, Miller AC, Mitnick CD, Modongo C, Mohr E, Monedero I, Nahid P, Ndjeka N, O'Donnell MR, Padayatchi N, Palmero D, Pape JW, Podewils LJ, Reynolds I, Riekstina V, Robert J, Rodriguez M, Seaworth B, Seung KJ, Schnippel K, Shim TS, Singla R, Smith SE, Sotgiu G, Sukhbaatar G, Tabarsi P, Tiberi S, Trajman A, Trieu L, Udwadia ZF, van der Werf TS, Veziris N, Viiklepp P, Vilbrun SC, Walsh K, Westenhouse J, Yew WW, Yim JJ, Zetola NM, Zignol M, Menzies D. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018; 392:821–834.
Article
46. Dalcolmo M, Gayoso R, Sotgiu G, D'Ambrosio L, Rocha JL, Borga L, Fandinho F, Braga JU, Galesi VM, Barreira D, Sanchez DA, Dockhorn F, Centis R, Caminero JA, Migliori GB. Effectiveness and safety of clofazimine in multidrug-resistant tuberculosis: a nationwide report from Brazil. Eur Respir J. 2017; 49.
47. Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X, Wu M, Zen L, Sun H, Liu Y, Gu J, Lin F, Wang X, Zhang Z. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015; 45:161–170.
Article
48. Pagliotto AD, Caleffi-Ferracioli KR, Lopes MA, Baldin VP, Leite CQ, Pavan FR, Scodro RB, Siqueira VL, Cardoso RF. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. J Microbiol Immunol Infect. 2016; 49:980–983.
Article
49. Gonzalo X, Drobniewski F. Is there a place for β-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother. 2013; 68:366–369.
Article
50. Payen MC, De Wit S, Martin C, Sergysels R, Muylle I, Van Laethem Y, Clumeck N. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2012; 16:558–560.
Article
51. Jeon D. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update: applicability in South Korea. Tuberc Respir Dis (Seoul). 2017; 80:336–343.
Article
52. Aseffa A, Chukwu JN, Vahedi M, Aguwa EN, Bedru A, Mebrahtu T, Ezechi OC, Yimer G, Yamuah LK, Medhin G, Connolly C, Rida W, Aderaye G, Zumla AI, Onyebujoh PC. 4FDC Study Group. Efficacy and safety of ‘fixed dose’ versus ‘loose’ drug regimens for treatment of pulmonary tuberculosis in two high TB-burden african countries: a randomized controlled trial. PLoS One. 2016; 11:e0157434.
Article
53. World Health Organization. Definitions and reporting frame-work for tuberculosis: 2013 revision [Internet]. Geneva: World Health Organization;2013. cited 2018 Dec 19. Available from: http://www.who.int/iris/handle/10665/79199.
54. Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, Bernardo J, Venkataramanan R, Sterling TR. ATS (American Thoracic Society) Hepatotoxicity of Antituberculosis Therapy Subcommittee. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006; 174:935–952.
Article
55. Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN, Becerra MC, Benedetti A, Burgos M, Centis R, Chan ED, Chiang CY, Cox H, D'Ambrosio L, DeRiemer K, Dung NH, Enarson D, Falzon D, Flanagan K, Flood J, Garcia-Garcia ML, Gandhi N, Granich RM, Hollm-Delgado MG, Holtz TH, Iseman MD, Jarlsberg LG, Keshavjee S, Kim HR, Koh WJ, Lancaster J, Lange C, de Lange WC, Leimane V, Leung CC, Li J, Menzies D, Migliori GB, Mishustin SP, Mitnick CD, Narita M, O'Riordan P, Pai M, Palmero D, Park SK, Pasvol G, Peña J, Perez-Guzman C, Quelapio MI, Ponce-de-Leon A, Riekstina V, Robert J, Royce S, Schaaf HS, Seung KJ, Shah L, Shim TS, Shin SS, Shiraishi Y, Sifuentes-Osornio J, Sotgiu G, Strand MJ, Tabarsi P, Tupasi TE, van Altena R, Van der Walt M, Van der Werf TS, Vargas MH, Viiklepp P, Westenhouse J, Yew WW, Yim JJ. Collaborative Group for Meta-Analysis of Individual Patient Data in MDR-TB. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012; 9:e1001300.
Article
56. Huang L, Liu J, Yu X, Shi L, Liu J, Xiao H, Huang Y. Drug-drug interactions between moxifloxacin and rifampicin based on pharmacokinetics in vivo in rats. Biomed Chromatogr. 2016; 30:1591–1598.
Article
57. Marra F, Marra CA, Moadebi S, Shi P, Elwood RK, Stark G, FitzGerald JM. Levofloxacin treatment of active tuberculosis and the risk of adverse events. Chest. 2005; 128:1406–1413.
Article
58. Bolhuis MS, Panday PN, Pranger AD, Kosterink JG, Alffenaar JC. Pharmacokinetic drug interactions of antimicrobial drugs: a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams. Pharmaceutics. 2011; 3:865–913.
Article
59. World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis [Internet]. Geneva: World Health Organization;2014. cited 2018 Dec 18. Available from: https://www.who.int/tb/publications/pmdt_companionhandbook/en/.
60. Ahmad Khan F, Gelmanova IY, Franke MF, Atwood S, Zeml-yanaya NA, Unakova IA, Andreev YG, Berezina VI, Pavlova VE, Shin SS, Yedilbayev AB, Becerra MC, Keshavjee S. Aggressive regimens reduce risk of recurrence after successful treatment of MDR-TB. Clin Infect Dis. 2016; 63:214–220.
Article
61. Caminero JA. Guidelines for the clinical and operational management of drug-resistant tuberculosis [Internet]. Paris: International Union Against Tuberculosis and Lung Disease;2013. cited 2018 Dec 18. Available from: https://www.theunion.org/what-we-do/publications/technical/guidelines-for-the-clinical-and-operational-management-of-drug-resistant-tuberculosis.
62. Agyeman AA, Ofori-Asenso R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2016; 15:41.
Article
63. Sotgiu G, D'Ambrosio L, Centis R, Tiberi S, Esposito S, Dore S, Spanevello A, Migliori GB. Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2016; 17:373.
Article
Full Text Links
  • JKMA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr