Hanyang Med Rev.  2018 Jun;38(2):73-79. 10.7599/hmr.2018.38.2.73.

Human Resistome Study with Metagenomic Sequencing Data

Affiliations
  • 1Department of Computer Science and Engineering, College of Engineering, Hanyang University, Seoul, Korea. minarho@hanyang.ac.kr
  • 2Department of Biomedical Informatics, Hanyang University, Seoul, Korea.

Abstract

With the introduction of synthetic antibiotics, many lives including humans and animals have been saved against bacterial infection. An increasing level of antibiotics use, however, raises serious problems of multi-drug resistance and transferring of resistance genes across different environments and countries. Advances in high-throughput sequencing technology and efficient bioinformatics methods allow us to perform a large-scale screening and analysis of resistomes in the human and environmental microbiomes. Recent studies on human microbiomes have revealed a diverse distribution of resistance genes and their transferring activities in the communities. This review discusses recent progresses in metagenomic approaches to identify resistance genes in the human microbiome, including genomic sequence search and functional metagenomics methods. Using Rifampicin ADP-ribosyltransferase as an example, an integrative approach that analyzes the sequences and three-dimensional structures of the proteins derived from resistance genes is also introduced.

Keyword

Human microbiome; Metagenome; Antibiotics resistance

MeSH Terms

ADP Ribose Transferases
Animals
Anti-Bacterial Agents
Bacterial Infections
Computational Biology
Drug Resistance, Multiple
Humans*
Mass Screening
Metagenome
Metagenomics*
Microbiota
Rifampin
ADP Ribose Transferases
Anti-Bacterial Agents
Rifampin

Figure

  • Fig. 1 Chemical structure of rifamycin families.

  • Fig. 2 Mutiple sequence alignment of rifampicin ADP-ribosyltransferase se quencs and three-dimentional X-ray structure of Arr-ms and rifampicin (PDBID: 2HW2).


Cited by  1 articles

Human Microbiome and Resistome Studies
Mina Rho
Hanyang Med Rev. 2018;38(2):71-72.    doi: 10.7599/hmr.2018.38.2.71.


Reference

1. D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011; 477:457–461.
2. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome. PLOS ONE. 2012; 7:e34953.
Article
3. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000; 405:299–304.
Article
4. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016; 529:336.
Article
5. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases. 2014; 14:742–750.
Article
6. Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 2014; 59:Suppl 2. S71–S75.
Article
7. Stogios PJ, Cox G, Spanogiannopoulos P, Pillon MC, Waglechner N, Skarina T, et al. Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun. 2016; 7:11343.
Article
8. Qi X, Lin W, Ma M, Wang C, He Y, He N, et al. Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci U S A. 2016; 113:3803–3808.
Article
9. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, et al. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc Natl Acad Sci U S A. 2008; 105:4886–4891.
Article
10. Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin. Emerg Microbes Infect. 2014; 3:e17.
11. Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science Progress. 2002; 85:57–72.
Article
12. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology. 2014; 13:42.
Article
13. Knapp CW, Dolfing J, Ehlert PAI, Graham DW. Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environmental Science & Technology. 2010; 44:580–587.
Article
14. Andersson DI, Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev. 2011; 35:901–911.
Article
15. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol. 2001; 67:561–568.
Article
16. von Wintersdorff CJH, Penders J, Stobberingh EE, Lashof AMLO, Hoebe CJPA, Savelkoul PHM, et al. High Rates of Antimicrobial Drug Resistance Gene Acquisition after International Travel, the Netherlands. Emerging Infectious Diseases. 2014; 20:649–657.
Article
17. Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000; 406:775–781.
Article
18. Alekshun MN, Levy SB. Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell. 2007; 128:1037–1050.
Article
19. Ventola CL. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics. 2015; 40:277–283.
20. Ventola CL. The Antibiotic Resistance Crisis: Part 2: Management Strategies and New Agents. Pharmacy and Therapeutics. 2015; 40:344–352.
21. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agerso Y, Lund O, et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother. 2013; 68:771–777.
Article
22. Anjum MF. Screening methods for the detection of antimicrobial resistance genes present in bacterial isolates and the microbiota. Future Microbiology. 2015; 10:317–320.
Article
23. Zhang XX, Zhang T, Fang HH. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 2009; 82:397–414.
Article
24. Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003; 57:369–394.
Article
25. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016; 7:13219.
Article
26. Adu-Oppong B, Gasparrini AJ, Dantas G. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann N Y Acad Sci. 2017; 1388:42–58.
Article
27. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad N, et al. PATRIC as a unique resource for studying antimicrobial resistance. Briefings in Bioinformatics. 2017; bbx083-bbx.
Article
28. Lee D, Das S, Dawson NL, Dobrijevic D, Ward J, Orengo C. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases. PLOS Computational Biology. 2016; 12:e1004926.
Article
29. Philippon A, Slama P, Dény P, Labia R. A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes. Clinical Microbiology Reviews. 2016; 29:29–57.
Article
30. Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC. Current and future resources for functional metagenomics. Front Microbiol. 2015; 6:1196.
Article
31. Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017; 15:422–434.
Article
32. dos Santos DFK, Istvan P, Quirino BF, Kruger RH. Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. Microbial Ecology. 2017; 73:479–491.
Article
33. Sommer MOA, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009; 325:1128–1131.
Article
34. Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol. 2004; 6:981–989.
Article
35. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. The ISME journal. 2009; 3:243–251.
Article
36. Liu B, Pop M. ARDB--Antibiotic Resistance Genes Database. Nucleic Acids Res. 2009; 37:D443–D447.
Article
37. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013; 57:3348–3357.
Article
38. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. Isme j. 2015; 9:207–216.
Article
39. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017; 45:D566–Dd73.
Article
40. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME Journal. 2015; 9:207–216.
Article
41. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012; 67:2640–2644.
Article
42. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014; 58:212–220.
Article
43. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018; 6:23.
Article
44. Hartmann G, Honikel KO, Knüsel F, Nüesch J. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta. 1967; 145:843–844.
Article
45. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016; 4:DOI: 10.1128/microbiolspec.VMBF-0016-2015.
Article
46. Stogios PJ, Cox G, Spanogiannopoulos P, Pillon MC, Waglechner N, Skarina T, et al. Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun. 2016; 7:11343.
Article
47. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, et al. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc Natl Acad Sci U S A. 2008; 105:4886–4891.
Article
48. Dabbs ER, Yazawa K, Mikami Y, Miyaji M, Morisaki N, Iwasaki S, et al. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother. 1995; 39:1007–1009.
Article
49. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun. 2013; 4:2151.
Article
50. Ghosh TS, Gupta SS, Nair GB, Mande SS. In Silico Analysis of Antibiotic Resistance Genes in the Gut Microflora of Individuals from Diverse Geographies and Age-Groups. PLOS ONE. 2013; 8:e83823.
Article
51. Yang Z, Guo Z, Qiu C, Li Y, Feng X, Liu Y, et al. Preliminary analysis showed country-specific gut resistome based on 1267 feces samples. Gene. 2016; 581:178–182.
Article
52. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H, et al. The Human Gut Microbiome as a Transporter of Antibiotic Resistance Genes between Continents. Antimicrobial Agents and Chemotherapy. 2015; 59:6551.
Article
53. Gibson MK, Wang B, Ahmadi S, Burnham C-AD, Tarr PI, Warner BB, et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbiol. 2016; 1:16024.
Article
54. Pérez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A, Ott SJ, et al. Differential Effects of Antibiotic Therapy on the Structure and Function of Human Gut Microbiota. PLOS ONE. 2013; 8:e80201.
Article
55. Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Barnabas B, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014; 514:59.
Article
Full Text Links
  • HMR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr