Yonsei Med J.  2016 Nov;57(6):1404-1411. 10.3349/ymj.2016.57.6.1404.

Triglycerides to High-Density Lipoprotein Cholesterol Ratio Can Predict Impaired Glucose Tolerance in Young Women with Polycystic Ovary Syndrome

Affiliations
  • 1Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea. jyoh@ewha.ac.kr

Abstract

PURPOSE
The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS.
MATERIALS AND METHODS
We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs).
RESULTS
The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p<0.05).
CONCLUSION
The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in young Korean women with PCOS, and women with NFG and a high TG/HDL-C ratio had a higher prevalence of IGT. Therefore, Korean women with PCOS with a TG/HDL-C ratio >2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG.

Keyword

Triglycerides; cholesterol; HDL; insulin resistance; glucose intolerance; polycystic ovary syndrome

MeSH Terms

Adult
Blood Glucose/analysis/metabolism
Body Mass Index
Cardiovascular Diseases/*epidemiology
Cholesterol, HDL/*blood
Dyslipidemias/epidemiology
Fasting
Female
Glucose Intolerance/*epidemiology/etiology
Glucose Tolerance Test
Humans
*Insulin Resistance
Lipoproteins, HDL
Polycystic Ovary Syndrome/*blood/complications/epidemiology
Prevalence
Triglycerides/*blood
Young Adult
Blood Glucose
Cholesterol, HDL
Lipoproteins, HDL
Triglycerides

Figure

  • Fig. 1 Selection and entry of subjects in this study. PCOS, polycystic ovary syndrome.

  • Fig. 2 Receiver-operating characteristic curve of TG/HDL-C ratio to predict insulin resistance in women with polycystic ovary syndrome. TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; AUC, area under the receiver-operating characteristic curve; CI, confidence interval.


Cited by  1 articles

Triglyceride and glucose index for identifying abnormal insulin sensitivity in women with polycystic ovary syndrome
Seeun Kwon, Aram Heo, Sungwook Chun
Obstet Gynecol Sci. 2023;66(4):307-315.    doi: 10.5468/ogs.23103.


Reference

1. Ehrmann DA, Liljenquist DR, Kasza K, Azziz R, Legro RS, Ghazzi MN. PCOS/Troglitazone Study Group. Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006; 91:48–53.
Article
2. Ovalle F, Azziz R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertil Steril. 2002; 77:1095–1105.
Article
3. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999; 84:165–169.
Article
4. Lee H, Oh JY, Sung YA, Chung H, Cho WY. The prevalence and risk factors for glucose intolerance in young Korean women with polycystic ovary syndrome. Endocrine. 2009; 36:326–332.
Article
5. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013; 98:4565–4592.
Article
6. Salley KE, Wickham EP, Cheang KI, Essah PA, Karjane NW, Nestler JE. Glucose intolerance in polycystic ovary syndrome--a position statement of the Androgen Excess Society. J Clin Endocrinol Metab. 2007; 92:4546–4556.
Article
7. Kim JJ, Choi YM. Dyslipidemia in women with polycystic ovary syndrome. Obstet Gynecol Sci. 2013; 56:137–142.
Article
8. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005; 36:232–240.
Article
9. Kannel WB, Vasan RS, Keyes MJ, Sullivan LM, Robins SJ. Usefulness of the triglyceride-high-density lipoprotein versus the cholesterol-high-density lipoprotein ratio for predicting insulin resistance and cardiometabolic risk (from the Framingham Offspring Cohort). Am J Cardiol. 2008; 101:497–501.
Article
10. Kim-Dorner SJ, Deuster PA, Zeno SA, Remaley AT, Poth M. Should triglycerides and the triglycerides to high-density lipoprotein cholesterol ratio be used as surrogates for insulin resistance? Metabolism. 2010; 59:299–304.
Article
11. Li C, Ford ES, Meng YX, Mokdad AH, Reaven GM. Does the association of the triglyceride to high-density lipoprotein cholesterol ratio with fasting serum insulin differ by race/ethnicity? Cardiovasc Diabetol. 2008; 7:4.
Article
12. McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, et al. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am J Cardiol. 2005; 96:399–404.
Article
13. Salazar MR, Carbajal HA, Espeche WG, Leiva Sisnieguez CE, March CE, Balbín E, et al. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance. Diab Vasc Dis Res. 2013; 10:346–352.
Article
14. Vega GL, Barlow CE, Grundy SM, Leonard D, DeFina LF. Triglyceride-to-high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men. J Investig Med. 2014; 62:345–349.
Article
15. Salazar MR, Carbajal HA, Espeche WG, Leiva Sisnieguez CE, Balbín E, Dulbecco CA, et al. Relation among the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio, insulin resistance, and associated cardio-metabolic risk factors in men and women. Am J Cardiol. 2012; 109:1749–1753.
Article
16. Park SY, Cho YJ, Lee SR, Chung H, Jeong K. Triglyceride is a useful surrogate marker for insulin resistance in Korean women with polycystic ovary syndrome. Yonsei Med J. 2015; 56:785–792.
Article
17. Xiang SK, Hua F, Tang Y, Jiang XH, Zhuang Q, Qian FJ. Relationship between serum lipoprotein ratios and insulin resistance in polycystic ovary syndrome. Int J Endocrinol. 2012; 2012:173281.
Article
18. Kim JS, Kang HT, Shim JY, Lee HR. The association between the triglyceride to high-density lipoprotein cholesterol ratio with insulin resistance (HOMA-IR) in the general Korean population: based on the National Health and Nutrition Examination Survey in 2007-2009. Diabetes Res Clin Pract. 2012; 97:132–138.
Article
19. Kimm H, Lee SW, Lee HS, Shim KW, Cho CY, Yun JE, et al. Associations between lipid measures and metabolic syndrome, insulin resistance and adiponectin. - Usefulness of lipid ratios in Korean men and women -. Circ J. 2010; 74:931–937.
Article
20. Zawadzki J, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In : Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publications;1992. p. 377–384.
21. Yildiz BO, Bolour S, Woods K, Moore A, Azziz R. Visually scoring hirsutism. Hum Reprod Update. 2010; 16:51–64.
Article
22. Oh JY, Lee H, Sung YA. Usefulness of oral glucose insulin sensitivity index in women with polycystic ovary syndrome. Ewha Med J. 2011; 34:27–32.
Article
23. Consensus Development Conference on Insulin Resistance. 5-6 November 1997. American Diabetes Association. Diabetes Care. 1998; 21:310–314.
24. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237:E214–E223.
Article
25. Gasevic D, Frohlich J, Mancini GB, Lear SA. The association between triglyceride to high-density-lipoprotein cholesterol ratio and insulin resistance in a multiethnic primary prevention cohort. Metabolism. 2012; 61:583–589.
Article
26. Sun Y, Li W, Hou X, Wang C, Li C, Zhang X, et al. Triglycerides and ratio of triglycerides to high-density lipoprotein cholesterol are better than liver enzymes to identify insulin resistance in urban middle-aged and older non-obese Chinese without diabetes. Chin Med J (Engl). 2014; 127:1858–1862.
27. Sumner AE, Harman JL, Buxbaum SG, Miller BV 3rd, Tambay AV, Wyatt SB, et al. The triglyceride/high-density lipoprotein cholesterol ratio fails to predict insulin resistance in African-American women: an analysis of Jackson Heart Study. Metab Syndr Relat Disord. 2010; 8:511–514.
Article
28. Murguía-Romero M, Jiménez-Flores JR, Sigrist-Flores SC, Espinoza-Camacho MA, Jiménez-Morales M, Piña E, et al. Plasma triglyceride/HDL-cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults. J Lipid Res. 2013; 54:2795–2799.
Article
29. Saxena P, Prakash A, Nigam A. Efficacy of 2-hour post glucose insulin levels in predicting insulin resistance in polycystic ovarian syndrome with infertility. J Hum Reprod Sci. 2011; 4:20–22.
Article
30. Salazar MR, Carbajal HA, Espeche WG, Aizpurúa M, Maciel PM, Reaven GM. Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. Am J Med. 2014; 127:152–157.
Article
31. Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010; 122:42–52.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr