J Pathol Transl Med.  2018 Sep;52(5):349-353. 10.4132/jptm.2018.07.16.

Abrupt Dyskeratotic and Squamoid Cells in Poorly Differentiated Carcinoma: Case Study of Two Thoracic NUT Midline Carcinomas with Cytohistologic Correlation

Affiliations
  • 1Department of Pathology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. hanjho@skku.edu
  • 2Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Abstract

Cytologic diagnosis of nuclear protein in testis (NUT) midline carcinoma (NMC) is important due to its aggressive behavior and miserable prognosis. Early diagnosis of NMC can facilitate proper management, and here we report two rare cases of thoracic NMC with cytohistologic correlation. In aspiration cytology, the tumor presented with mixed cohesive clusters and dispersed single cells, diffuse background necrosis and many neutrophils. Most of the tumor cells had scanty cytoplasm and medium-sized irregular nuclei, which had fine to granular nuclear chromatin. Interestingly, a few dyskeratotic cells or squamoid cell clusters were present in each case. Biopsy specimen histology revealed more frequent squamous differentiation, and additional immunohistochemistry tests showed nuclear expression of NUT. Because this tumor has a notorious progression and has been previously underestimated in terms of its prevalence, awareness of characteristic findings and proper ancillary tests should be considered in all suspicious cases.

Keyword

BRD4-NUT fusion oncogene protein; NUT midline carcinoma; Lung; Cytology

MeSH Terms

Biopsy
Chromatin
Cytoplasm
Diagnosis
Early Diagnosis
Immunohistochemistry
Lung
Necrosis
Neutrophils
Nuclear Proteins
Nuts*
Prevalence
Prognosis
Testis
Chromatin
Nuclear Proteins

Figure

  • Fig. 1. Thoracic nuclear protein in testis (NUT) midline carcinoma and cytohistologic findings. (A–H) Case 1. (A–D) Chest radiograph and computed tomography (CT) shows 3.8-cm-sized mass in the right lower lobe with multiple enlarged lymph nodes (arrows). Positron emission tomography (PET) reveals 18F-fluorodeoxyglucose uptake of the mass and lymph nodes. (E) Mediastinal lymph node aspiration smears are highly cellular with cohesive clusters and dispersed single cells. Scattered dyskeratotic cells and squamous differentiations are noticed (arrows). (F) Tumor cells have scanty cytoplasm, nuclear molding, irregular nuclear contours, and fine to granular nuclear chromatin. Nucleoli are small but occasionally identified. A few dyskeratotic cells are also identified. Background of the smear shows many neutrophils and necrosis. (G, H) Biopsy of a mediastinal lymph node shows monotonous tumor cells and hyperchromatic nuclei. Nuclei have fine to granular chromatin and the occasional small nucleolus, and the cytoplasm is scant and delicately amphophilic. Foci of squamous differentiation are more often identified than in cytology. (I–R) Case 2. (I–L) Chest and abdomen CT show a 5.5-cm-sized mass (white arrow) in the left lower lobe, and multiple metastases in both a lobe of the liver (arrowheads) and the adrenal glands (black arrow). PET highlights multiple hypermetabolic lesions in the whole spine, ribs, pelvic bone and scapulae, in addition to the lung and liver masses. (M–P) In aspiration cytology of a mediastinal lymph node, some tumor cells are medium-sized and poorly differentiated with scanty cytoplasm and hyperchromatic nuclei. However, others have more abundant amphophilic to eosinophilic cytoplasm and a lower nuclear to cytoplasmic ratio, which can be considered squamous differentiation. (Q, R) Histology of a mediastinal lymph node shows two different tumor cell components with extensive necrosis, poorly differentiated cells and squamous cells, which are similar to the findings of aspiration cytology. (S–V) Immunohistochemistry shows nuclear expression of NUT in case 1 (S) and case 2 (U). Tumor cells are positive for p63 (T, case 1) and there is a variable proliferation index of Ki-67 (V, case 2).


Reference

1. French CA. Pathogenesis of NUT midline carcinoma. Annu Rev Pathol. 2012; 7:247–65.
Article
2. Stelow EB. A review of NUT midline carcinoma. Head Neck Pathol. 2011; 5:31–5.
Article
3. Park HS, Bae YS, Yoon SO, et al. Usefulness of nuclear protein in testis (NUT) immunohistochemistry in the cytodiagnosis of NUT midline carcinoma: a brief case report. Korean J Pathol. 2014; 48:335–8.
Article
4. Policarpio-Nicolas ML, de Leon EM, Jagirdar J. Cytologic findings of NUT midline carcinoma in the hilum of the lung. Diagn Cytopathol. 2015; 43:739–42.
Article
5. Bishop JA, French CA, Ali SZ. Cytopathologic features of NUT midline carcinoma: a series of 26 specimens from 13 patients. Cancer Cytopathol. 2016; 124:901–8.
Article
6. French CA, Ramirez CL, Kolmakova J, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008; 27:2237–42.
Article
7. Schwartz BE, Hofer MD, Lemieux ME, et al. Differentiation of NUT midline carcinoma by epigenomic reprogramming. Cancer Res. 2011; 71:2686–96.
Article
8. Sturgis CD, Nassar DL, D'Antonio JA, Raab SS. Cytologic features useful for distinguishing small cell from non-small cell carcinoma in bronchial brush and wash specimens. Am J Clin Pathol. 2000; 114:197–202.
Article
9. Marks RA, Cramer HM, Wu HH. Fine-needle aspiration cytology of basaloid squamous cell carcinoma and small cell carcinoma-a comparison study. Diagn Cytopathol. 2013; 41:81–4.
Article
10. Gray W, Kocjan G. Diagnostic cytopathology. Philadelphia: Elsevier;2010. p. 68–9. 3rd.
11. Evans AG, French CA, Cameron MJ, et al. Pathologic characteristics of NUT midline carcinoma arising in the mediastinum. Am J Surg Pathol. 2012; 36:1222–7.
Article
Full Text Links
  • JPTM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr