Transl Clin Pharmacol.  2018 Sep;26(3):111-114. 10.12793/tcp.2018.26.3.111.

Augmented renal clearance

Affiliations
  • 1Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. art_atkinson@msn.com

Abstract

Adding to the complexity of caring for critically ill patients is the fact that many of them have a creatinine clearance that exceeds 130 mL/min/1.73 m². This phenomenon, termed augmented renal clearance (ARC), has only recently been widely recognized and its pathogenesis remains incompletely understood. However, ARC has been shown to result in increased dose requirements for drugs that are primarily eliminated by renal excretion, including many antimicrobial agents and enoxaparin. Recognition of ARC is hampered by the fact that the standard creatinine-based equations used to estimate renal function are not accurate in this clinical setting and the diagnosis is best established using both serum and urine creatinine measurements to calculate clearance. So a high index of clinical suspicion and awareness is usually required before this step is taken to confirm the diagnosis of ARC.

Keyword

Antimicrobial agents; Augmented renal clearance; Critically ill patients; Drug dose requirements

MeSH Terms

Anti-Infective Agents
Creatinine
Critical Illness
Diagnosis
Enoxaparin
Humans
Renal Elimination
Anti-Infective Agents
Creatinine
Enoxaparin

Figure

  • Figure 1 Current understanding of the pathophysiology of ARC in which critical illness triggers the systemic inflammatory response syndrome (SIRS) or mobilizes renal functional reserve (RFR) to eventually increase renal blood flow and glomerular filtration rate (GFR). Intravenous fluids and drugs administered to critically ill patients may increase cardiac output and contribute to the increase in renal blood flow. Atrial natriuretic peptide (ANP) plasma concentrations are also elevated in patients with ARC and may play a role in increasing renal blood flow. (Modified from Sime FB, Udy AA, Roberts JA. Curr Opin Pharmacol 2015;24:1-6.)


Reference

1. Dettli L. Individualization of drug dosage in patients with renal disease. Med Clin North Am. 1974; 58:977–985. PMID: 4425338.
Article
2. Atkinson AJ Jr, Huang SM. Nephropharmacology: Drugs and the kidney. Clin Pharmacol Ther. 2009; 86:453–456. DOI: 10.1038/clpt.2009.191. PMID: 19844216.
Article
3. Baptista JP, Udy AA. Augmented renal clearance in critical illness: “The Elephant in the ICU”. Minerva Anestesiol. 2015; 81:1050–1052. PMID: 25881734.
4. Zaske DE, Sawchuk RJ, Gerding DN, Strate RG. Increased dosage requirements of gentamicin in burn patients. J Trauma. 1976; 16:824–828. PMID: 994263.
Article
5. Zaske DE, Sawchuk RJ, Strate RG. The necessity of increased doses of amikacin in burn patients. Surgery. 1978; 84:603–608. PMID: 715674.
6. Loirat P, Rohan J, Baillet A, Beaufils F, David R, Chapman A. Increased glomerular filtration rate in patients with major burns and its effect on the pharmacokinetics of tobramycin. N Engl J Med. 1978; 299:915–919. PMID: 692596.
Article
7. Ruiz S, Minville V, Asehnoune K, Virtos M, Georges B, Fourcade O, et al. Screening of patients with augmented renal clearance in ICU: taking into account the CKD-EPI equation, the age, and the cause of admission. Ann Intensive Care. 2015; 5:49. DOI: 10.1186/s13613-015-0090-8. PMID: 26667819.
Article
8. Bilbao-Meseguer I, Rodriguez-Gascón A, Rarrasa H, Isla A, Solinís MÁ. Augmented renal clearance in critically ill patients: A systematic review. Clin Pharmacokinet. 2018; 57:1107–1121. DOI: 10.1007/s40262-018-0636-7. PMID: 29441476.
Article
9. Udy AA, Jarrett P, Lassig-Smith M, Stuart J, Starr T, Dunlop R, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance. J Neurotrauma. 2017; 34:137–144. DOI: 10.1089/neu.2015.4328. PMID: 27302851.
10. Barletta JF, Mangram AJ, Byrne M, Sucher JF, Hollingworth AK, Ali-Osman FR, et al. Identifying augmented renal clearance in trauma patients: Validation of the augmented renal clearance in trauma intensive care scoring system. J Trauma Acute Care Surg. 2017; 82:665–671. DOI: 10.1097/TA.0000000000001387. PMID: 28129261.
11. Lautrette A, Phan TN, Ouchchane L, AitiHassan A, Tixier V, Heng AE, et al. High creatinine clearance in critically ill patients with community-acquired acute infectious meningitis. BMC Nephrol. 2012; 13:124. DOI: 10.1186/1471-2369-13-124. PMID: 23013403.
Article
12. May CC, Arora S, Parli SE, Fraser JF, Bastin MT, Cook AM. Augmented renal clearance in patients with subarachnoid hemorrhage. Neurocrit Care. 2015; 23:374–379. DOI: 10.1007/s12028-015-0127-8. PMID: 25761425.
Article
13. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013; 17:R35. DOI: 10.1186/cc12544. PMID: 23448570.
Article
14. De Waele JJ, Dumoulin A, Janssen A, Hoste EA. Epidemiology of augmented renal clearance in mixed ICU patients. Minerva Anestesiol. 2015; 81:1079–1085. PMID: 25697881.
15. Declercq P, Nijs S, D'Hoore A, Van Wijngaerden E, Wolthuis A, de Buck van Overstraeten A, et al. Augmented renal clearance in non-critically ill abdominal and trauma surgery patients is an underestimated phenomenon: a point prevalence study. J Trauma Acute Care Surg. 2016; 81:468–477. DOI: 10.1097/TA.0000000000001138. PMID: 27257707.
16. Sturgiss SN, Wilkinson R, Davison JM. Renal reserve during human pregnancy. Am J Physiol. 1996; 271:F16–F20. PMID: 8760238.
Article
17. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, et al. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care. 2011; 15:R139. DOI: 10.1186/cc10262. PMID: 21651804.
Article
18. Grootaert V, Willems L, Debaveye Y, Meyfroidt G, Spriet I. Augmented renal clearance in the critically ill: how to assess kidney function. Ann Pharmacother. 2012; 46:952–959. DOI: 10.1345/aph.1Q708. PMID: 22693271.
Article
19. Tsai D, Udy AA, Stewart PC, Gourley S, Morick NM, Lipman J, et al. Prevalence of augmented renal clearance and performance of glomerular filtration estimates in indigenous Australian patients requiring intensive care admission. Anaesth Intensive Care. 2018; 46:42–50. PMID: 29361255.
Article
20. Brown R, Babcock R, Talbert J, Gruenberg J, Czurak C, Campbell M. Renal function in critically ill postoperative patients: sequential assessment of creatinine osmolar and free water clearance. Crit Care Med. 1980; 8:68–72. PMID: 7353390.
21. Udy A, Jarrett P, Stuart J, Lassig-Smith M, Starr T, Dunlop R, et al. Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds. Crit Care. 2014; 18:657. DOI: 10.1186/s13054-014-0667-z. PMID: 25432141.
Article
22. Udy AA, Jarrett P, Lassig-Smith M, Stuart J, Starr T, Dunlop R, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance. J Neurotrauma. 2017; 34:137–144. DOI: 10.1089/neu.2015.4328. PMID: 27302851.
Article
23. Varga I, Rigó J Jr, Somos P, Joó JG, Nagy B. Analysis of maternal circulation and renal function in physiologic pregnancies: parallel examinations of the changes in the cardiac output and the glomerular filtration rate. J Matern Fetal Med. 2000; 9:97–104. PMID: 10902822.
Article
24. Sime FB, Udy AA, Roberts JA. Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol. 2015; 24:1–6. DOI: 10.1016/j.coph.2015.06.002. PMID: 26119486.
Article
25. Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: What we do and do not know about cytokine regulation. Crit Care Med. 1996; 24:163–172. PMID: 8565523.
26. Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene. 2015; 569:1–6. DOI: 10.1016/j.gene.2015.06.029. PMID: 26074089.
27. Shannon JA, Jolliffe N, Smith HW. The excretion of urine in the dog. IV. The effect of maintenance diet, feeding, etc., upon the quantity of glomerular filtrate. Am J Physiol. 1932; 101:625–638.
28. Molitoris BA. Rethinking CKD evaluation: should we be quantifying basal or stimulated GFR to maximize precision and sensitivity? Am J Kidney Dis. 2017; 69:675–683. DOI: 10.1053/j.ajkd.2016.11.028. PMID: 28223001.
29. Baptista JP, Sousa E, Martins PJ, Pimentel JM. Augmented renal clearance in septic patients and implications for vancomycin optimization. Int J Antimicrob Agents. 2012; 39:420–423. DOI: 10.1016/j.ijantimicag.2011.12.011. PMID: 22386742.
30. Carrié C, Petit L, d'Houdain N, Sauvage N, Cottenceau V, Lafitte M, et al. Association between augmented renal clearance, antibiotic exposure and clinical outcome in critically ill septic patients receiving high doses of β-lactams administered by continuous infusion: a prospective observational study. Int J Antimicrob Agents. 2018; 51:443–449. DOI: 10.1016/j.ijantimicag.2017.11.013. PMID: 29180280.
Article
31. Abdel El, Abdelhamid MHE, Atteya DAM. Impact of augmented renal clearance on enoxaparin therapy in critically ill patients. Egypt J Anesth. 2017; 33:113–117.
32. Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care. 2013; 28:695–700. DOI: 10.1016/j.jcrc.2013.03.003. PMID: 23683557.
Article
33. Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L, et al. Augmented renal clearance, low β-lactam concentrations and clinical outcomes in the critically ill: An observational prospective cohort study. Int J Antimicrob Agents. 2015; 45:385–392. DOI: 10.1016/j.ijantimicag.2014.12.017. PMID: 25656151.
Article
34. European Commission on Antimicrobial Susceptibility Testing. Accessed 17 May 2018. Internet at: http://www.eucast.org/clinical.breakpoints/.
35. Udy AA, Dulhunty JM, Roberts JA, Davis JS, Web SAR, Bellomo R, et al. Association between augmented renal clearance and clinical outcomes in patients receiving β-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomized placebo-controlled, clinical trial. Int J Antimicrob Agents. 2017; 49:624–630. DOI: 10.1016/j.ijantimicag.2016.12.022. PMID: 28286115.
36. Udy AA, De Waele JJ, Lipman J. Augmented renal clearance and therapeutic monitoring of β-lactams. Int J Antimicrob Agents. 2015; 45:331–333. DOI: 10.1016/j.ijantimicag.2014.12.020. PMID: 25665727.
Article
37. Udy A, Roberts JA, Boots RJ, Lipman J. You only find what you look for: the importance of high creatinine clearance in the critically ill. Anaesth Intensive Care. 2009; 37:11–13. PMID: 19157339.
Article
Full Text Links
  • TCP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr