Ann Lab Med.  2019 Jan;39(1):15-22. 10.3343/alm.2019.39.1.15.

Progress in Automated Urinalysis

Affiliations
  • 1Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium. joris.delanghe@ugent.be

Abstract

New technological advances have paved the way for significant progress in automated urinalysis. Quantitative reading of urinary test strips using reflectometry has become possible, while complementary metal oxide semiconductor (CMOS) technology has enhanced analytical sensitivity and shown promise in microalbuminuria testing. Microscopy-based urine particle analysis has greatly progressed over the past decades, enabling high throughput in clinical laboratories. Urinary flow cytometry is an alternative for automated microscopy, and more thorough analysis of flow cytometric data has enabled rapid differentiation of urinary microorganisms. Integration of dilution parameters (e.g., creatinine, specific gravity, and conductivity) in urine test strip readers and urine particle flow cytometers enables correction for urinary dilution, which improves result interpretation. Automated urinalysis can be used for urinary tract screening and for diagnosing and monitoring a broad variety of nephrological and urological conditions; newer applications show promising results for early detection of urothelial cancer. Concomitantly, the introduction of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has enabled fast identification of urinary pathogens. Automation and workflow simplification have led to mechanical integration of test strip readers and particle analysis in urinalysis. As the information obtained by urinalysis is complex, the introduction of expert systems may further reduce analytical errors and improve the quality of sediment and test strip analysis. With the introduction of laboratory-on-a-chip approaches and the use of microfluidics, new affordable applications for quantitative urinalysis and readout on cell phones may become available. In this review, we present the main recent developments in automated urinalysis and future perspectives.

Keyword

Automated microscopy; Flow cytometry; Urinalysis; Microfluidics; Test strip analysis; Laboratory on a chip; Urinary tract infections

MeSH Terms

Automation
Cell Phones
Creatinine
Expert Systems
Flow Cytometry
Mass Screening
Mass Spectrometry
Microfluidics
Microscopy
Semiconductors
Specific Gravity
Urinalysis*
Urinary Tract
Urinary Tract Infections
Creatinine

Cited by  3 articles

Internal Quality Control Data of Urine Reagent Strip Tests and Derivation of Control Rules Based on Sigma Metrics
Haeil Park, Younsuk Ko
Ann Lab Med. 2021;41(5):447-454.    doi: 10.3343/alm.2021.41.5.447.

Advances in Automated Urinalysis Systems, Flow Cytometry and Digitized Microscopy
Sun Young Cho, Mina Hur
Ann Lab Med. 2019;39(1):1-2.    doi: 10.3343/alm.2019.39.1.1.

Diagnostic Characteristics of Urinary Red Blood Cell Distribution Incorporated in UF-5000 for Differentiation of Glomerular and Non-Glomerular Hematuria
Hanwool Cho, Jaeeun Yoo, Hyunjung Kim, Hyunsik Jang, Yonggoo Kim, Hyojin Chae
Ann Lab Med. 2022;42(2):160-168.    doi: 10.3343/alm.2022.42.2.160.


Reference

1. Hannemann-Pohl K. Automation of urine sediment examination: a comparison of the Sysmex UF-100 automated flow cytometer with routine manual diagnosis (microscopy, test strips, and bacterial culture). Clin Chem Lab Med. 1999; 37:753–764. PMID: 10510734.
2. Fogazzi GB, Garigali G. The different ways to obtain digital images of urine microscopy findings: their advantages and limitations. Clin Chim Acta. 2017; 466:160–161. PMID: 28122200.
3. Langlois MR, Delanghe JR, Steyaert SR, Everaert KC, De Buyzere ML. Automated flow cytometry compared with an automated dipstick reader for urinalysis. Clin Chem. 1999; 45:118–122. PMID: 9895347.
4. Penders J, Fiers T, Delanghe JR. Quantitative evaluation of urinalysis test strips. Clin Chem. 2002; 48:2236–2241. PMID: 12446482.
5. Kubelka P, Ein Beitrag zur Optik der Farbanstriche MF. A contribution to the optics of paints. Z Tech Phys. 1931; 12:593–601.
6. Penders J, Fiers T, Giri M, Wuyts B, Ysewyn L, Delanghe JR. Quantitative measurement of ketone bodies in urine using reflectometry. Clin Chem Lab Med. 2005; 43:724–729. PMID: 16207132.
7. Decavele AS, Fiers T, Penders J, Delanghe JR. A sensitive quantitative test strip based point-of-care albuminuria screening assay. Clin Chem Lab Med. 2012; 50:673–678. PMID: 22505559.
8. Delanghe JR, Himpe J, De Cock N, Delanghe S, De Herde K, Stove V, et al. Sensitive albuminuria analysis using dye-binding based test strips. Clin Chim Acta. 2017; 471:107–112. PMID: 28554541.
9. Guy M, Newall R, Borzomato J, Kalra PA, Price C. Diagnostic accuracy of the urinary albumin: creatinine ratio determined by the CLINITEK Microalbumin and DCA 2000+ for the rule-out of albuminuria in chronic kidney disease. Clin Chim Acta. 2009; 399:54–58. PMID: 18834870.
10. Oyaert MN, Himpe J, Speeckaert MM, Stove VV, Delanghe JR. Quantitative urine test strip reading for leukocyte esterase and hemoglobin peroxidase. Clin Chem Lab Med. 2018; 56:1126–1132. PMID: 29427551.
11. Urit 14F urine reagent strips. Package insert. Urit medical Electronic Co., Ltd.;Guangxi 51004. PRACTICE China.
12. Smith GT, Dwork N, Khan SA, Millet M, Magar K, Javanmard M, et al. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab Chip. 2016; 16:2069–2078. PMID: 27166097.
13. Lee DS, Jeon BG, Ihm C, Park JK, Jung MY. A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader. Lab Chip. 2011; 11:120–126. PMID: 21109898.
14. Mohammadi S, Maeki M, Mohamadi RM, Ishida A, Tani H, Tokeshi M. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst. 2015; 140:6493–6499. PMID: 26207925.
15. Ginardi RVH, Saikhu A. Intelligent method for dipstick urinalysis using smartphone camera. In : Linawati MMS, editor. Information and communication technology. ICT-EurAsia 2014. Lecture notes in computer science, vol. 8407. Berlin, Heidelberg: Springer;2014. p. 66–77.
16. İnce FD, Ellidağ HY, Koseoğlu M, Şimşek N, Yalçın H, Zengin MO. The comparison of automated urine analyzers with manual microscopic examination for urinalysis automated urine analyzers and manual urinalysis. Pract Lab Med. 2016; 5:14–20. PMID: 28856199.
17. Chien TI, Kao JT, Liu HL, Lin PC, Hong JS, Hsieh HP, et al. Urine sediment examination: a comparison of automated urinalysis systems and manual microscopy. Clin Chim Acta. 2007; 384:28–34. PMID: 17604012.
18. Linko S, Kouri TT, Toivonen E, Ranta PH, Chapoulaud E, Lalla M. Analytical performance of the Iris iQ200 automated urine microscopy analyzer. Clin Chim Acta. 2006; 372:54–64. PMID: 16696963.
19. Wah DT, Wises PK, Butch AW. Analytic performance of the iQ200 automated urine microscopy analyzer and comparison with manual counts using Fuchs-Rosenthal cell chambers. Am J Clin Pathol. 2005; 123:290–296. PMID: 15842056.
20. Park J, Kim J. Evaluation of iQ200 automated urine microscopy analyzer. Korean J Lab Med. 2008; 28:267–273. PMID: 18728375.
21. Budak YU, Huysal K. Comparison of three automated systems for urine chemistry and sediment analysis in routine laboratory practice. Clin Lab. 2011; 57:47–52. PMID: 21391464.
22. Shayanfar N, Tobler U, von Eckardstein A, Bestmann L. Automated urinalysis: first experiences and a comparison between the Iris iQ200 urine microscopy system, the Sysmex UF-100 flow cytometer and manual microscopic particle counting. Clin Chem Lab Med. 2007; 45:1251–1256. PMID: 17635081.
23. Stürenburg E, Kramer J, Schön G, Cachovan G, Sobottka I. Detection of significant bacteriuria by use of the iQ200 automated urine microscope. J Clin Microbiol. 2014; 52:2855–2860. PMID: 24871218.
24. Lamchiagdhase P, Preechaborisutkul K, Lomsomboon P, Srisuchart P, Tantiniti P, Khan-u-Ra N, et al. Urine sediment examination: a comparison between the manual method and the iQ200 automated urine microscopy analyzer. Clin Chim Acta. 2005; 358:167–174. PMID: 16018883.
25. Anderlini R, Manieri G, Lucchi C, Raisi O, Soliera AR, Torricelli F, et al. Automated urinalysis with expert review for incidental identification of atypical urothelial cells: an anticipated bladder carcinoma diagnosis. Clin Chim Acta. 2015; 451:252–256. PMID: 26460065.
26. Yüksel H, Kiliç E, Ekinci A, Evliyaoğlu O. Comparison of fully automated urine sediment analyzers H800-FUS100 and LabUMat-UriSed with manual microscopy. J Clin Lab Anal. 2013; 27:312–316. PMID: 23852791.
27. Kocer D, Sarıguzel FM, Karakukcu C. Cutoff values for bacteria and leukocytes for urine sediment analyzer FUS200 in culture-positive urinary-tract infections. Scand J Clin Lab Invest. 2014; 74:414–417. PMID: 24693995.
28. Dewulf G, Harrois D, Mazars E, Cattoen C, Canis F. Evaluation of the performances of the iQ(®)200 ELITE automated urine microscopy analyser and comparison with manual microscopy method. Pathol Biol (Paris). 2011; 59:264–268. PMID: 19942378.
29. Akın OK, Serdar MA, Cizmeci Z, Genc O, Aydin S. Comparison of LabUMat-with-urised and iQ200 fully automatic urine sediment analysers with manual urine analysis. Biotechnol Appl Biochem. 2009; 53:139–144. PMID: 19021504.
30. Zaman Z, Fogazzi GB, Garigali G, Croci MD, Bayer G, Kránicz T. Urine sediment analysis: analytical and diagnostic performance of sediMAX – a new automated microscopy image-based urine sediment analyser. Clin Chim Acta. 2010; 411:147–154. PMID: 19861122.
31. Castiglione V, Cavalier E, Diop C, Gadisseur R. Distinction between urine crystals by automated urine analyzer SediMAX conTRUST is specific but lacks sensitivity. Clin Chem Lab Med. 2017; 55:e288–e290. PMID: 28593909.
32. Intra J, Sala MR, Falbo R, Cappellini F, Brambilla P. Improvement in the detection of enteric protozoa from clinical stool samples using the automated urine sediment analyzer sediMAX® 2 compared to sediMAX® 1. Eur J Clin Microbiol Infect Dis. 2017; 36:147–151. PMID: 27646557.
33. Lee W, Ha JS, Ryoo NH. Comparison of the automated cobas u 701 urine microscopy and UF-1000i flow cytometry systems and manual microscopy in the examination of urine sediments. J Clin Lab Anal. 2016; 30:663–671. PMID: 26842372.
34. Wesarachkitti B, Khejonnit V, Pratumvinit B, Reesukumal K, Meepanya S, Pattanavin C, et al. Performance evaluation and comparison of the fully automated urinalysis analyzers UX-2000 and Cobas. Lab Med. 2016; 47:124–133. PMID: 27069030.
35. Bakan E, Ozturk N, Baygutalp NK, Polat E, Akpinar K, Dorman E, et al. Comparison of Cobas 6500 and Iris IQ200 fully-automated urine analyzers to manual urine microscopy. Biochem Med (Zagreb). 2016; 26:365–375. PMID: 27812305.
36. Delanghe JR, Kouri TT, Huber AR, Hannemann-Pohl K, Guder WG, Lun A, et al. The role of automated urine particle flow cytometry in clinical practice. Clin Chim Acta. 2000; 301:1–18. PMID: 11020458.
37. Manoni F, Tinello A, Fornasiero L, Hoffer P, Temporin V, Valverde S, et al. Urine particle evaluation: a comparison between the UF-1000i and quantitative microscopy. Clin Chem Lab Med. 2010; 48:1107–1111. PMID: 20482296.
38. Jiang T, Chen P, Ouyang J, Zhang S, Cai D. Urine particles analysis: performance evaluation of Sysmex UF-1000i and comparison among urine flow cytometer, dipstick, and visual microscopic examination. Scand J Clin Lab Invest. 2011; 71:30–37. PMID: 21091139.
39. Previtali G, Ravasio R, Seghezzi M, Buoro S, Alessio MG. Performance evaluation of the new fully automated urine particle analyser UF-5000 compared to the reference method of the Fuchs-Rosenthal chamber. Clin Chim Acta. 2017; 472:123–130. PMID: 28760666.
40. Sánchez-Mora C, Acevedo D, Porres MA, Chaqués AM, Zapardiel J, Gallego-Cabrera A, et al. Comparison of automated devices UX-2000 and SediMAX/AutionMax for urine samples screening: a multicenter Spanish study. Clin Biochem. 2017; 50:714–718. PMID: 28188739.
41. Gessoni G, Saccani G, Valverde S, Manoni F, Caputo M. Does flow cytometry have a role in preliminary differentiation between urinary tract infections sustained by gram positive and gram negative bacteria? An Italian polycentric study. Clin Chim Acta. 2015; 440:152–156. PMID: 25433140.
42. De Rosa R, Grosso S, Bruschetta G, Avolio M, Stano P, Modolo ML, et al. Evaluation of the Sysmex UF1000i flow cytometer for ruling out bacterial urinary tract infection. Clin Chim Acta. 2010; 411:1137–1142. PMID: 20359474.
43. Oyaert M, Van Meensel B, Cartuyvels R, Frans J, Laffut W, Vandecandelaere P, et al. Laboratory diagnosis of urinary tract infections: towards a BILULU consensus guideline. J Microbiol Methods. 2018; 146:92–99. PMID: 29427686.
44. Broeren MA, Bahçeci S, Vader HL, Arents NL. Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J Clin Microbiol. 2011; 49:1025–1029. PMID: 21248088.
45. Jolkkonen S, Paattiniemi EL, Kärpänoja P, Sarkkinen H. Screening of urine samples by flow cytometry reduces the need for culture. J Clin Microbiol. 2010; 48:3117–3121. PMID: 20592157.
46. Mejuto P, Luengo M, Díaz-Gigante J. Automated flow cytometry: an alternative to urine culture in a routine clinical microbiology laboratory? Int J Microbiol. 2017; 2017:8532736. PMID: 29090008.
47. Yusuf E, Van Herendael B, van Schaeren J. Performance of urinalysis tests and their ability in predicting results of urine cultures: a comparison between automated test strip analyser and flow cytometry in various subpopulations and types of samples. J Clin Pathol. 2017; 70:631–636. PMID: 27980053.
48. Monsen T, Ryden P. A new concept and a comprehensive evaluation of SYSMEX UF-1000i flow cytometer to identify culture-negative urine specimens in patients with UTI. Eur J Clin Microbiol Infect Dis. 2017; 36:1691–1703. PMID: 28386705.
49. García-Coca M, Gadea I, Esteban J. Relationship between conventional culture and flow cytometry for the diagnosis of urinary tract infection. J Microbiol Methods. 2017; 137:14–18. PMID: 28330780.
50. Íñigo M, Coello A, Fernández-Rivas G, Carrasco M, Marcó C, Fernández A, et al. Evaluation of the SediMax automated microscopy sediment analyzer and the Sysmex UF-1000i flow cytometer as screening tools to rule out negative urinary tract infections. Clin Chim Acta. 2016; 456:31–35. PMID: 26921459.
51. Martín-Gutiérrez G, Porras-González A, Martín-Pérez C, Lepe JA, Aznar J. Evaluation and optimization of the Sysmex UF1000i system for the screening of urinary tract infection in primary health care elderly patients. Enferm Infecc Microbiol Clin. 2015; 33:320–323. PMID: 25444045.
52. Gutiérrez-Fernández J, Lara A, Bautista MF, de Dios Luna J, Polo P, Miranda C, et al. Performance of the Sysmex UF1000i system in screening for significant bacteriuria before quantitative culture of aerobic/facultative fast-growth bacteria in a reference hospital. J Appl Microbiol. 2012; 113:609–614. PMID: 22726229.
53. Kadkhoda K, Manickam K, Degagne P, Sokolowski P, Pang P, Kontzie N, et al. UF-1000i flow cytometry is an effective screening method for urine specimens. Diagn Microbiol Infect Dis. 2011; 69:130–136. PMID: 21251555.
54. Pieretti B, Brunati P, Pini B, Colzani C, Congedo P, Rocchi M, et al. Diagnosis of bacteriuria and leukocyturia by automated flow cytometry compared with urine culture. J Clin Microbiol. 2010; 48:3990–3996. PMID: 20739491.
55. van der Zwet WC, Hessels J, Canbolat F, Deckers MM. Evaluation of the Sysmex UF-1000i® urine flow cytometer in the diagnostic work-up of suspected urinary tract infection in a Dutch general hospital. Clin Chem Lab Med. 2010; 48:1765–1771. PMID: 20726812.
56. Krongvorakul J, Phundhusuwannakul S, Santanirand P, Kunakorn M. A flow cytometric urine analyzer for bacteria and white blood cell counts plus urine dispstick test for rapid screening of bacterial urinary tract infection. Asian Biomed. 2012; 6:601–608.
57. Poropatich CO, Mendoza SM, Hitlan JJ, Wilkinson DS. Inconsistent detection of bacteriuria with the Yellow IRIS automated urinalysis workstation. Lab Med. 1988; 19:499–501.
58. McCrossin T, Roy LP. Comparison of hydrometry, refractometry, osmometry and Ames N-Multistix SG in estimation of urinary concentration. Aust Paediatr J. 1985; 21:185–188. PMID: 4062717.
59. Brandon CA. Urine specific gravity measurement: reagent strip versus refractometer. Clin Lab Sci. 1994; 7:308–310. PMID: 10150386.
60. Dorizzi RM, Caputo M. Measurement of urine relative density using refractometer and reagent strips. Clin Chem Lab Med. 1998; 36:925–928. PMID: 9915224.
61. Íñigo M, Coello A, Fernández-Rivas G, Rivaya B, Hidalgo J, Quesada MD, et al. Direct identification of urinary tract pathogens from urine samples, combining urine screening methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2016; 54:988–993. PMID: 26818668.
62. Zboromyrska Y, Rubio E, Alejo I, Vergara A, Mons A, Campo I, et al. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin Microbiol Infect. 2016; 22:561.e1–561.e6.
63. Veron L, Mailler S, Girard V, Muller BH, L'Hostis G, Ducruix C, et al. Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2015; 34:1787–1795. PMID: 26054715.
64. Ferreira L, Sánchez-Juanes F, González-Avila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010; 48:2110–2115. PMID: 20392910.
65. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010; 48:3482–3486. PMID: 20668126.
66. Wang XH, Zhang G, Fan YY, Yang X, Sui WJ, Lu XX. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J Microbiol Methods. 2013; 92:231–235. PMID: 23305925.
67. March Rosselló GA, Gutiérrez Rodríguez MP, de Lejarazu Leonardo RO, Orduña Domingo A, Bratos Pérez MA. Procedure for microbial identification based on matrix-assisted laser desorption/ionization-time of flight mass spectrometry from screening-positive urine samples. APMIS. 2014; 122:790–795. PMID: 24320741.
68. Demarco ML, Burnham CA. Diafiltration MALDI-TOF mass spectrometry method for culture-independent detection and identification of pathogens directly from urine specimens. Am J Clin Pathol. 2014; 141:204–212. PMID: 24436267.
69. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009; 49:543–551. PMID: 19583519.
70. Burillo A, Rodríguez-Sánchez B, Ramiro A, Cercenado E, Rodríguez-Créixems M, Bouza E. Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PLoS One. 2014; 9:e86915. PMID: 24466289.
71. Köhling HL, Bittner A, Müller KD, Buer J, Becker M, Rübben H, et al. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J Med Microbiol. 2012; 61:339–344. PMID: 22275503.
72. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015; 6:791. PMID: 26300860.
73. Kline KA, Lewis AL. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr. 2016; 4.
74. Siegman-Igra Y. The significance of urine culture with mixed flora. Curr Opin Nephrol Hypertens. 1994; 3:656–659. PMID: 7881993.
75. Jung JS, Eberl T, Sparbier K, Lange C, Kostrzewa M, Schubert S, et al. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect Dis. 2014; 33:949–955. PMID: 24338093.
76. Oviaño M, Ramírez CL, Barbeyto LP, Bou G. Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS analysis. J Antimicrob Chemother. 2017; 72:1350–1354. PMID: 28119478.
77. Lee DS, Jeon BG, Ihm C, Park JK, Jung MY. A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader. Lab Chip. 2011; 11:120–126. PMID: 21109898.
78. Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013; 13:2210–2251. PMID: 23652632.
79. Jalal UM, Jin GJ, Shim JS. Paper-plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine. Anal Chem. 2017; 89:13160–13166. PMID: 29131592.
80. Hosseini SA, Zanganeh S, Akbarnejad E, Salehi F, Abdolahad M. Microfluidic device for label-free quantitation and distinction of bladder cancer cells from the blood cells using micro machined silicon based electrical approach; suitable in urinalysis assays. J Pharm Biomed Anal. 2017; 134:36–42. PMID: 27871055.
81. Cho S, Park TS, Nahapetian TG, Yoon JY. Smartphone-based, sensitive μPAD detection of urinary tract infection and gonorrhea. Biosens Bioelectron. 2015; 74:601–611. PMID: 26190472.
82. Kouri TT, Gant VA, Fogazzi GB, Hofmann W, Hallander HO, Guder WG. Towards European urinalysis guidelines. Introduction of a project under European Confederation of Laboratory Medicine. Clin Chim Acta. 2000; 297:305–311. PMID: 10841931.
83. Delanghe JR, Speeckaert MM. Preanalytics in urinalysis. Clin Biochem. 2016; 49:1346–1350. PMID: 27784640.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr