1.Tao SM., Wichmann JL., Schoepf UJ., Fuller SR., Lu GM., Zhang LJ. Contrast-induced nephropathy in CT: incidence, risk factors and strategies for prevention. Eur Radiol. 2016. 26:3310–3318.
Article
2.Maeder M., Klein M., Fehr T., Rickli H. Contrast nephropathy: review focusing on prevention. J Am Coll Cardiol. 2004. 44:1763–1771.
Article
3.Chertow GM., Burdick E., Honour M., Bonventre JV., Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005. 16:3365–3370.
Article
4.McCullough PA., Soman SS. Contrast-induced nephropathy. Crit Care Clin. 2005. 21:261–280.
Article
5.Morcos SK., Thomsen HS., Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol. 1999. 9:1602–1613.
6.McDonald RJ., McDonald JS., Bida JP., Carter RE., Fleming CJ., Misra S, et al. Intravenous contrast material–induced nephropathy: causal or coincident phenomenon? Radiology. 2013. 267:106–118.
Article
7.Stacul F., Van der Molen AJ., Reimer P., Webb JA., Thomsen HS., Morcos SK, et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol. 2011. 21:2527–2541.
Article
8.Xu J., Mahesh M., Tsui BM. Is iterative reconstruction ready for MDCT? J Am Coll Radiol. 2009. 6:274–276.
Article
9.Brown KM., Zabic S., Koehler T. Acceleration of ML iterative algorithms for CT by the use of fast start images. SPIE. 2012. 8313:831339.
Article
10.Mehta D., Thompson R., Morton T., Dhanantwari A., Shefer E. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int J. 2013. 2:147–155.
11.Nakaura T., Nakamura S., Maruyama N., Funama Y., Awai K., Harada K, et al. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256–detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology. 2012. 264:445–454.
Article
12.Itatani R., Oda S., Utsunomiya D., Funama Y., Honda K., Katahira K, et al. Reduction in radiation and contrast medium dose via optimization of low-kilovoltage CT protocols using a hybrid iterative reconstruction algorithm at 256-slice body CT: phantom study and clinical correlation. Clin Radiol. 2013. 68:e128–e135.
Article
13.Namimoto T., Oda S., Utsunomiya D., Shimonobo T., Morita S., Nakaura T, et al. Improvement of image quality at low-radiation dose and low-contrast material dose abdominal CT in patients with cirrhosis: intraindividual comparison of low tube voltage with iterative reconstruction algorithm and standard tube voltage. J Comput Assist Tomogr. 2012. 36:495–501.
14.Jung SC., Kim SH., Cho JY. A comparison of the use of contrast media with different iodine concentrations for multidetector CT of the kidney. Korean J Radiol. 2011. 12:714–721.
Article
15.Strauss KJ., Goske MJ., Kaste SC., Bulas D., Frush DP., Butler P, et al. Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. Am J Roentgenol. 2010. 194:868–873.
Article
16.Iyama Y., Nakaura T., Yokoyama K., Kidoh M., Harada K., Tokuyasu S, et al. Impact of knowledge-based iterative model reconstruction in abdominal dynamic CT with low tube voltage and low contrast dose. Am J Roentgenol. 2016. 206:687–693.
Article
17.Hwang I., Cho JY., Kim SY., Oh SJ., Ku JH., Lee J, et al. Low tube voltage computed tomography urography using low-concentration contrast media: comparison of image quality in conventional computed tomography urography. Eur J Radiol. 2015. 84:2454–2463.
Article
18.Yanaga Y., Awai K., Funama Y., Nakaura T., Hirai T., Roux S, et al. Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. Am J Roentgenol. 2009. 193:W220–W229.
Article
19.Von Falck C., Bratanova V., Rodt T., Meyer B., Waldeck S., Wacker F, et al. Influence of sinogram affirmed iterative reconstruction of CT data on image noise characteristics and low-contrast detectability: an objective approach. PLoS One. 2013. 8:e56875.
Article
20.Kröpil P., Bigdeli AH., Nagel HD., Antoch G., Cohnen M. Impact of increasing levels of advanced iterative reconstruction on image quality in low-dose cardiac CT angiography. Rofo. 2014. 186:567–575.
21.Singh S., Kalra MK., Hsieh J., Licato PE., Do S., Pien HH, et al. Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology. 2010. 257:373–383.
Article
22.Nelson RC., Feuerlein S., Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011. 5:286–292.
Article
23.Yuh BI., Cohan RH., Francis IR., Korobkin M., Ellis JH. Comparison of nephrographic with excretory phase helical computed tomography for detecting and characterizing renal masses. Can Assoc Radiol J. 2000. 51:170–176.
24.Edward HR. Breast MRI: fundamentals and technical aspects. 1st ed. New York: Springer. 2008. 93.
25.Marin D., Nelson RC., Schindera ST., Richard S., Youngblood RS., Yoshizumi TT, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology. 2010. 254:145–153.
Article
26.Wang R., Schoepf UJ., Wu R., Reddy RP., Zhang C., Yu W, et al. Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol. 2012. 81:3141–3145.
Article
27.Leschka S., Stolzmann P., Schmid FT., Scheffel H., Stinn B., Marincek B, et al. Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol. 2008. 18:1809–1817.
Article
28.Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol. 2012. 13:1–11.
Article
29.Kaza RK., Platt JF., Al-Hawary MM., Wasnik A., Liu PS., Pandya A. CT enterography at 80 kVp with adaptive statistical iterative reconstruction versus at 120 kVp with standard reconstruction: image quality, diagnostic adequacy, and dose reduction. AJR Am J Roentgenol. 2012. 198:1084–1092.
Article
30.Seyal AR., Arslanoglu A., Abboud SF., Sahin A., Horowitz JM., Yaghmai V. CT of the abdomen with reduced tube voltage in adults: a practical approach. Radiographics. 2015. 35:1922–1939.
Article
31.Pan X., Sidky EY., Vannier M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl. 2009. 25:1230009.
Article
32.Dong J., Hayakawa Y., Kannenberg S., Kober C. Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013. 115:e63–e73.
Article
33.Wang ZJ., Coakley FV., Fu Y., Joe BN., Prevrhal S., Landeras LA, et al. Renal cyst pseudoenhancement at multidetector CT: what are the effects of number of detectors and peak tube voltage? Radiology. 2008. 248:910–916.
Article
34.Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010. 256:32–61.
Article