1. Smirnova MG, Kiselev SL, Gnuchev NV, Birchall JP, Pearson JP. Role of the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 and interleukin-8 in the pathogenesis of the otitis media with effusion. Eur Cytokine Netw. 2002; Apr-Jun. 13(2):161–72.
2. Daly KA, Brown WM, Segade F, Bowden DW, Keats BJ, Lindgren BR, et al. Chronic and recurrent otitis media: a genome scan for susceptibility loci. Am J Hum Genet. 2004; Dec. 75(6):988–97.
Article
3. Segade F, Daly KA, Allred D, Hicks PJ, Cox M, Brown M, et al. Association of the FBXO11 gene with chronic otitis media with effusion and recurrent otitis media: the Minnesota COME/ROM Family Study. Arch Otolaryngol Head Neck Surg. 2006; Jul. 132(7):729–33.
4. Allen EK, Chen WM, Weeks DE, Chen F, Hou X, Mattos JL, et al. A genome-wide association study of chronic otitis media with effusion and recurrent otitis media identifies a novel susceptibility locus on chromosome 2. J Assoc Res Otolaryngol. 2013; Dec. 14(6):791–800.
Article
5. Einarsdottir E, Hafren L, Leinonen E, Bhutta MF, Kentala E, Kere J, et al. Genome-wide association analysis reveals variants on chromosome 19 that contribute to childhood risk of chronic otitis media with effusion. Sci Rep. 2016; Sep. 6:33240.
Article
6. Dagan R, Leibovitz E, Leiberman A, Yagupsky P. Clinical significance of antibiotic resistance in acute otitis media and implication of antibiotic treatment on carriage and spread of resistant organisms. Pediatr Infect Dis J. 2000; May. 19(5 Suppl):S57–65.
Article
7. Liederman EM, Post JC, Aul JJ, Sirko DA, White GJ, Buchman CA, et al. Analysis of adult otitis media: polymerase chain reaction versus culture for bacteria and viruses. Ann Otol Rhinol Laryngol. 1998; Jan. 107(1):10–6.
Article
8. Kim H, Choo OS, Jang JH, Park HY, Choung YH. Chronological changes in microbial profiles in external and middle ear diseases: a 20-year study in Korea. Eur Arch Otorhinolaryngol. 2017; Mar. 274(3):1375–81.
Article
9. Lindberg K, Rynnel-Dagoo B, Sundqvist KG. Cytokines in nasopharyngeal secretions; evidence for defective IL-1 beta production in children with recurrent episodes of acute otitis media. Clin Exp Immunol. 1994; Sep. 97(3):396–402.
10. Sato K, Kawana M, Nonomura N, Nakano Y. Course of IL-1beta, IL-6, IL-8, and TNF-alpha in the middle ear fluid of the guinea pig otitis media model induced by nonviable Haemophilus influenzae. Ann Otol Rhinol Laryngol. 1999; Jun. 108(6):559–63.
11. Sudhoff HH, Klenke C. Inflammation cascade related to biofilms in otitis media. In : Kania R, Ars B, editors. Biofilms in otitis. Amsterdam: Kugler Publications;2015. p. 157–70.
12. Leichtle A, Klenke C, Ebmeyer J, Daerr M, Bruchhage KL, Hoffmann AS, et al. NOD-like receptor signaling in cholesteatoma. Biomed Res Int. 2015; 2015:408169.
Article
13. Klenke C, Janowski S, Borck D, Widera D, Ebmeyer J, Kalinowski J, et al. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One. 2012; 7(12):e52718.
Article
14. Joki-Erkkila VP, Puhakka H, Hurme M. Cytokine gene polymorphism in recurrent acute otitis media. Arch Otolaryngol Head Neck Surg. 2002; Jan. 128(1):17–20.
Article
15. Patel JA, Nair S, Revai K, Grady J, Saeed K, Matalon R, et al. Association of proinflammatory cytokine gene polymorphisms with susceptibility to otitis media. Pediatrics. 2006; Dec. 118(6):2273–9.
Article
16. Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992; Jun. 22(6):396–402.
17. Danis VA, Millington M, Hyland VJ, Grennan D. Cytokine production by normal human monocytes: inter-subject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin Exp Immunol. 1995; Feb. 99(2):303–10.
Article
18. Borgstein J, Gerritsma TV, Wieringa MH, Bruce IA. The Erasmus atelectasis classification: proposal of a new classification for atelectasis of the middle ear in children. Laryngoscope. 2007; Jul. 117(7):1255–9.
Article
19. Tos M. Upon the relationship between secretory otitis in childhood and chronic otitis and its sequelae in adults. J Laryngol Otol. 1981; Oct. 95(10):1011–22.
Article
20. Jesic SD, Dimitrijevic MV, Nesic VS, Jotic AD, Slijepcevic NA. Temporalis fascia graft perforation and retraction after tympanoplasty for chronic tubotympanic otitis and attic retraction pockets: factors associated with recurrence. Arch Otolaryngol Head Neck Surg. 2011; Feb. 137(2):139–43.
21. Dupont WD, Plummer WD Jr. Power and sample size calculations: a review and computer program. Control Clin Trials. 1990; Apr. 11(2):116–28.
22. Hollegaard MV, Bidwell JL. Cytokine gene polymorphism in human disease: on-line databases, Supplement 3. Genes Immun. 2006; Jun. 7(4):269–76.
Article
23. Dincic E, Zivkovic M, Stankovic A, Obradovic D, Alavantic D, Kostic V, et al. Association of polymorphisms in CTLA-4, IL-1ra and IL-1beta genes with multiple sclerosis in Serbian population. J Neuroimmunol. 2006; Aug. 177(1-2):146–50.
24. McCormick DP, Grady JJ, Diego A, Matalon R, Revai K, Patel JA, et al. Acute otitis media severity: association with cytokine gene polymorphisms and other risk factors. Int J Pediatr Otorhinolaryngol. 2011; May. 75(5):708–12.
Article
25. Schrijver HM, van As J, Crusius JB, Dijkstra CD, Uitdehaag BM. Interleukin (IL)-1 gene polymorphisms: relevance of disease severity associated alleles with IL-1beta and IL-1ra production in multiple sclerosis. Mediators Inflamm. 2003; Apr. 12(2):89–94.
26. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. The interleukin (IL)-1 cytokine family: balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015; Nov. 76(1):25–37.
27. Wang Y, Wang Q, Li Y, Chen Y, Shao J, Nick N, et al. Mmm-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via TLR2, MyD88, and IRAK4. Sci Rep. 2017; Jun. 7(1):4349.
Article
28. Ma J, Sun X, Guo T, Su H, Chen Q, Gong Z, et al. Interleukin-1 receptor antagonist inhibits angiogenesis via blockage IL-1α/PI3K/NF-κβ pathway in human colon cancer cell. Cancer Manag Res. 2017; Oct. 9:481–93.
29. Ding C, Zhao L, Sun Y, Li L, Xu Y. Interleukin-1 receptor antagonist polymorphism (rs2234663) and periodontitis susceptibility: a meta-analysis. Arch Oral Biol. 2012; Jun. 57(6):585–93.
Article
30. Cheng YK, Lin CD, Chang WC, Hwang GY, Tsai SW, Wan L, et al. Increased prevalence of interleukin-1 receptor antagonist gene polymorphism in patients with chronic rhinosinusitis. Arch Otolaryngol Head Neck Surg. 2006; Mar. 132(3):285–90.
Article
31. Sciacca FL, Ferri C, Vandenbroeck K, Veglia F, Gobbi C, Martinelli F, et al. Relevance of interleukin 1 receptor antagonist intron 2 polymorphism in Italian MS patients. Neurology. 1999; Jun. 52(9):1896–8.
Article
32. Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017; Aug. 47(8):600–11.
Article
33. Hamed MA, Nakata S, Shiogama K, Suzuki K, Sayed RH, Nishimura Y, et al. Cytokeratin 13, cytokeratin 17, and Ki-67 expression in human acquired cholesteatoma and their correlation with its destructive capacity. Clin Exp Otorhinolaryngol. 2017; Sep. 10(3):213–20.
Article
34. Jennings BA, Prinsley P, Philpott C, Willis G, Bhutta MF. The genetics of cholesteatoma: a systematic review using narrative synthesis. Clin Otolaryngol. 2018; Feb. 43(1):55–67.
Article