Anesth Pain Med.  2017 Oct;12(4):291-296. 10.17085/apm.2017.12.4.291.

Clinical application of intravenous anesthetic infusion with use of a pharmacokinetic-pharmacodynamic model in children

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea. dami0605@snu.ac.kr

Abstract

Recently, intravenous sedatives and analgesics are being commonly used in children because of the clinical need for increasing the non-operating room anesthesia and intraoperative neurophysiologic monitoring during surgery and environmental problems. Administration methods (single bolus, intermittent bolus, or continuous infusion) vary according to the clinical request. Continuous intravenous anesthesia based on the weight is still the most commonly used method for administration of intravenous drugs in children. With the newly developed statistical method and medical devices, target controlled infusion of intravenous anesthetics has become possible in pediatric anesthesia, in spite of the difficulty in obtaining the specific pharmacokinetic model using pharmacokinetic parameters. Nowadays, a pharmacokinetic-pharmacodynamic model for complete effect-site target controlled infusion is available for use in children. Several drugs are used for pediatric sedation, such as analgesics or anesthetics such as opioids (remifentanil, sufentanil or alfentanil), neuromuscular blocking agents or sedatives (midazolam, dexmedetomidine). All these drugs have been used in continuous infusion via various methods including target controlled infusion. Many studies have been carried out by researchers to use target controlled infusion for safe and efficient treatment in children according to the increase in clinical demand. Various pharmacokinetic-pharmacodynamic models for commonly used intravenous drugs will be reviewed, with a focus on children in this small discussion.

Keyword

Children; Pharmacodynamic; Pharmacokinetic

MeSH Terms

Analgesics
Analgesics, Opioid
Anesthesia
Anesthesia, Intravenous
Anesthetics
Anesthetics, Intravenous
Child*
Humans
Hypnotics and Sedatives
Intraoperative Neurophysiological Monitoring
Methods
Neuromuscular Blocking Agents
Sufentanil
Analgesics
Analgesics, Opioid
Anesthetics
Anesthetics, Intravenous
Hypnotics and Sedatives
Neuromuscular Blocking Agents
Sufentanil

Reference

1. Kay B, Rolly G. I.C.I. 35868, a new intravenous induction agent. Acta Anaesthesiol Belg. 1977; 28:303–16. PMID: 613708.
2. Kay B. Total intravenous anesthesia with etomidate. I. A trial in children. Acta Anaesthesiol Belg. 1977; 28:107–13. PMID: 930546.
3. Boyes RN, Scott DB, Jebson PJ, Godman MJ, Julian DG. Pharmacokinetics of lidocaine in man. Clin Pharmacol Ther. 1971; 12:105–16. DOI: 10.1002/cpt1971121105. PMID: 5099888.
4. Mitenko PA, Ogilvie RI. Rapidly achieved plasma concentration plateaus, with observations on theophylline kinetics. Clin Pharmacol Ther. 1972; 13:329–35. DOI: 10.1002/cpt1972133329.
5. Li M, Xu CY, Wang XD, Zhang LP, Guo XY. A comparison of target controlled versus manually controlled infusion of propofol in elderly patients. Zhonghua Yi Xue Za Zhi. 2011; 91:600–3. PMID: 21600129.
6. Passot S, Servin F, Allary R, Pascal J, Prades JM, Auboyer C, et al. Target-controlled versus manually-controlled infusion of propofol for direct laryngoscopy and bronchoscopy. Anesth Analg. 2002; 94:1212–6. DOI: 10.1097/00000539-200205000-00030. PMID: 11973192.
7. Mazzarella B, Melloni C, Montanini S, Novelli GP, Peduto VA, Santandrea E, et al. Comparison of manual infusion of propofol and target-controlled infusion:effectiveness, safety and acceptability. Minerva Anestesiol. 1999; 65:701–9. PMID: 10598427.
8. Lerman J, Jöhr M. Inhalational anesthesia vs total intravenous anesthesia (TIVA) for pediatric anesthesia. Paediatr Anaesth. 2009; 19:521–34. DOI: 10.1111/j.1460-9592.2009.02962.x. PMID: 19453585.
9. Kim SM, Kim SH, Seo DW, Lee KW. Intraoperative neurophysiologic monitoring:basic principles and recent update. J Korean Med Sci. 2013; 28:1261–9. DOI: 10.3346/jkms.2013.28.9.1261. PMID: 24015028. PMCID: PMC3763097.
10. Tobias JD. Sedation of infants and children outside of the operating room. Curr Opin Anaesthesiol. 2015; 28:478–85. DOI: 10.1097/ACO.0000000000000203. PMID: 26087264.
11. Kim HS. Target controlled infusion for total intravenous anesthesia in children. Anesth Pain Med. 2012; 7:203–9.
12. Struys MM, Coppens MJ, De Neve N, Mortier EP, Doufas AG, Van Bocxlaer JF, et al. Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology. 2007; 107:386–96. DOI: 10.1097/01.anes.0000278902.15505.f8. PMID: 17721240.
13. Rigouzzo A, Servin F, Constant I. Pharmacokinetic-pharmacodynamic modeling of propofol in children. Anesthesiology. 2010; 113:343–52. DOI: 10.1097/ALN.0b013e3181e4f4ca. PMID: 20613468.
14. Choi BM, Lee HG, Byon HJ, Lee SH, Lee EK, Kim HS, et al. Population pharmacokinetic and pharmacodynamic model of propofol externally validated in children. J Pharmacokinet Pharmacodyn. 2015; 42:163–77. DOI: 10.1007/s10928-015-9408-2. PMID: 25724290.
15. Ross AK, Davis PJ, Dear Gd GL, Ginsberg B, McGowan FX, Stiller RD, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg. 2001; 93:1393–401. DOI: 10.1097/00000539-200112000-00008. PMID: 11726413.
16. Sam WJ, Hammer GB, Drover DR. Population pharmacokinetics of remifentanil in infants and children undergoing cardiac surgery. BMC Anesthesiol. 2009; 9:5. DOI: 10.1186/1471-2253-9-5. PMID: 19635151. PMCID: PMC2723094.
17. Davis PJ, Wilson AS, Siewers RD, Pigula FA, Landsman IS. The effects of cardiopulmonary bypass on remifentanil kinetics in children undergoing atrial septal defect repair. Anesth Analg. 1999; 89:904–8. DOI: 10.1097/00000539-199910000-00016. DOI: 10.1213/00000539-199910000-00016. PMID: 10512263.
18. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997; 86:10–23. DOI: 10.1097/00000542-199701000-00004. PMID: 9009935.
19. Eleveld DJ, Proost JH, Vereecke H, Absalom AR, Olofsen E, Vuyk J, et al. An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017; 126:1005–118. DOI: 10.1097/ALN.0000000000001634. PMID: 28509794.
20. Salo M. Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand. 1992; 36:201–20. DOI: 10.1111/j.1399-6576.1992.tb03452.x. PMID: 1574967.
21. Greeley WJ, de Bruijn NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg. 1987; 66:1067–72. DOI: 10.1213/00000539-198711000-00001. PMID: 2959170.
22. Guay J, Gaudreault P, Tang A, Goulet B, Varin F. Pharmacokinetics of sufentanil in normal children. Can J Anaesth. 1992; 39:14–20. DOI: 10.1007/BF03008666. PMID: 1531117.
23. Borsuk A, Wołoszczuk-Gebicka B, Bartkowska-Śniatkowska A, Rosada-Kurasińska J, Bienert A, Wiczling P. Flip-flop phenomenon in epidural sufentanil pharmacokinetics:a population study in children and infants. J Clin Pharmacol. 2017; 57:1194–206. DOI: 10.1002/jcph.912. PMID: 28510304.
24. Davis PJ, Killian A, Stiller RL, Cook DR, Guthrie RD, Scierka AM. Pharmacokinetics of alfentanil in newborn premature infants and older children. Dev Pharmacol Ther. 1989; 13:21–7. DOI: 10.1159/000457577. PMID: 2505988.
25. Roure P, Jean N, Leclerc AC, Cabanel N, Levron JC, Duvaldestin P. Pharmacokinetics of alfentanil in children undergoing surgery. Br J Anaesth. 1987; 59:1437–40. DOI: 10.1093/bja/59.11.1437. PMID: 3120765.
26. Goresky GV, Koren G, Sabourin MA, Sale JP, Strunin L. The pharmacokinetics of alfentanil in children. Anesthesiology. 1987; 67:654–9. DOI: 10.1097/00000542-198711000-00007. PMID: 3118743.
27. Fiset P, Mathers L, Engstrom R, Fitzgerald D, Brand SC, Hsu F, et al. Pharmacokinetics of computer-controlled alfentanil administration in children undergoing cardiac surgery. Anesthesiology. 1995; 83:944–55. DOI: 10.1097/00000542-199511000-00006. PMID: 7486179.
28. Rey E, Delaunay L, Pons G, Murat I, Richard MO, Saint-Maurice C, et al. Pharmacokinetics of midazolam in children:comparative study of intranasal and intravenous administration. Eur J Clin Pharmacol. 1991; 41:355–7. DOI: 10.1007/BF00314967. PMID: 1804652.
29. Payne K, Mattheyse FJ, Liebenberg D, Dawes T. The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol. 1989; 37:267–72. DOI: 10.1007/BF00679782. PMID: 2612542.
30. Harte GJ, Gray PH, Lee TC, Steer PA, Charles BG. Haemodynamic responses and population pharmacokinetics of midazolam following administration to ventilated, preterm neonates. J Paediatr Child Health. 1997; 33:335–8. DOI: 10.1111/j.1440-1754.1997.tb01611.x. PMID: 9323623.
31. Tolia V, Brennan S, Aravind MK, Kauffman RE. Pharmacokinetic and pharmacodynamic study of midazolam in children during esophagogastroduodenoscopy. J Pediatr. 1991; 119:467–71. DOI: 10.1016/S0022-3476(05)82066-9.
32. Brunette KE, Anderson BJ, Thomas J, Wiesner L, Herd DW, Schulein S. Exploring the pharmacokinetics of oral ketamine in children undergoing burns procedures. Paediatr Anaesth. 2011; 21:653–62. DOI: 10.1111/j.1460-9592.2011.03548.x. PMID: 21355949.
33. Lazarev VV, Galibin IE, Savchuk SA, Izotov BN, Vedenin AN, Vasina RP. Ketamine pharmacokinetics and metabolism after bolus injection of X-ray contrast agents in roentgeno-endovascular interventions in children. Anesteziol Reanimatol. 2001; (1):38–43. PMID: 11338516.
34. Pedraz JL, Calvo MB, Lanao JM, Muriel C, Santos Lamas J, Domínguez-Gil A. Pharmacokinetics of rectal ketamine in children. Br J Anaesth. 1989; 63:671–4. DOI: 10.1093/bja/63.6.671. PMID: 2611068.
35. Wiczling P, Bartkowska-Śniatkowska A, Szerkus O, Siluk D, Rosada-Kurasińska J, Warzybok J, et al. The pharmacokinetics of dexmedetomidine during long-term infusion in critically ill pediatric patients. A Bayesian approach with informative priors. J Pharmacokinet Pharmacodyn. 2016; 43:315–24. DOI: 10.1007/s10928-016-9474-0. PMID: 27221375. PMCID: PMC4886153.
36. Vilo S, Rautiainen P, Kaisti K, Aantaa R, Scheinin M, Manner T, et al. Pharmacokinetics of intravenous dexmedetomidine in children under 11 yr of age. Br J Anaesth. 2008; 100:697–700. DOI: 10.1093/bja/aen070. PMID: 18378546.
37. Chrysostomou C, Schulman SR, Herrera Castellanos M, Cofer BE, Mitra S, da Rocha MG, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2014; 164:276–82. DOI: 10.1016/j.jpeds.2013.10.002. PMID: 24238862.
38. Kim HJ, Shin WJ, Park S, Ahn HS, Oh JH. The sedative effects of the intranasal administration of dexmedetomidine in children undergoing surgeries compared to other sedation methods:a systematic review and meta-analysis. J Clin Anesth. 2017; 38:33–9. DOI: 10.1016/j.jclinane.2017.01.014. PMID: 28372674.
39. Wierda JM, Meretoja OA, Taivainen T, Proost JH. Pharmacokinetics and pharmacokinetic-dynamic modelling of rocuronium in infants and children. Br J Anaesth. 1997; 78:690–5. DOI: 10.1093/bja/78.6.690. PMID: 9215021.
40. Woloszczuk-Gebicka B, Wyska E, Grabowski T, Swierczewska A, Sawicka R. Pharmacokinetic-pharmacodynamic relationship of rocuronium under stable nitrous oxide-fentanyl or nitrous oxide-sevoflurane anesthesia in children. Paediatr Anaesth. 2006; 16:761–8. DOI: 10.1111/j.1460-9592.2005.01840.x. PMID: 16879519.
41. Mahmood I, Goteti K. Prediction of drug concentration-time profiles in children from adults:an allometric approach. Am J Ther. 2015; 22:132–40. DOI: 10.1097/MJT.0b013e318274df57. PMID: 23676343.
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr